SMA Observations of Magnetic Fields in High-mass Proto-clusters: a Tale of Two Cores

Keping Qiu
Nanjing University

In collaboration with Q. Zhang, K. M. Menten, and the SMA polarization legacy team

Do B Fields (and/or Turb.) Matter?

Expected B fields in Clouds:

Ostriker et al. (2001)

Expected B fields in Cores:

Strong Field

Crutcher (2006)

Weak Field

Padoan et al. (2001)

Clear-cut cases test theories:

Girart et al. (2006)

also see Rao et al. (2009) and Stephens et al. (2013)

High-mass cases:

also see Tang et al. (2009)

Qiu et al. (2013)

G35.2-0.74 N

Cloud: sufficient to guide collapse Core: rotationally twisted

Statistical analysis of P.A. dispersion

(Hildebrand et al. 2009; Houde et al. 2009; Koch et al. 2010)

Turbulence and B field are energetically comparable

A Supercritical core with strong B field, significantly fragmenting

G240.31+0.07

A clear hourglass

Fit to a family of parabolic functions: $y = g_i + g_i Cx^2$ (e.g., Girart et al. 2006)

 $\mathbf{B} \sim 1.0 \text{ mG (C-F method)}$

1.6 mG (field curvature, e.g., Schleuning et al. 1998)

Remarks

Well-ordered B fields seen in the two filamentary and fragmenting cores:

```
G35.2N — L-shape (from poloidal to toroidal)
G240.31 — Hourglass (outflow, rotation, flattening, B
fields – all in the right place!)
```

- O B fields are crucial (at least in "clouds/clumps → cores");
- Kinematics are of great importance in interpreting the morphology of the B fields;
- O Strong B fields ($\mu \sim 2$) are not sufficient to suppress core fragmentation.

Thanks for your attention!