Unveiling the physics of star formation with the SMA:

a decade's restrospective

Star formation \& Filaments: the Herschel view

Hersche/ has revealed a "universal" filamentary structure in the cold interstellar medium
"Universal" = Ubiquitous + quasi-universal properties (e.g width)

IC5146 : Actively star-forming cloud

Polaris : Non-star-forming "cirrus" cloud

~ 75% of prestellar cores form in filaments, above a (column) density threshold $\Sigma>150 \mathrm{M}_{\circ} / \mathrm{pc}^{2}$

$$
<=>
$$

$\mathrm{M} / \mathrm{L} \gtrsim 15 \mathrm{M}_{\mathrm{o}} / \mathrm{pc}$

Star formation \& Filaments: the Herschel view

Toward a 'universal' scenario for star formation?

See related chapter for « Protostars \& Planets VI »
by André, Di Francesco, Ward-Thompson, Inutsuka, Pudritz, Pineda

1) The dissipation of large-scale MHD 'turbulence' generates filaments

Polaris - Herschel/SPIRE 250 mm
2) Gravity fragments the densest filaments into prestellar cores

Star formation \& Filaments: the Herschel view

Role of filaments in massive star formation?

Tracing filamentary networks with the DisPerSE
Hill et al. 2011; Minier et al. 2013 algorithm (Sousbie 2011)

Disorganized networks ('nests') and dominating 'ridges' Showing relative importance of turbulence vs. gravity (?)

Star formation \& Filaments: the Herschel view

Role of filaments in massive star formation?

HOBYS

PI: F. Motte
massive star formation and star clusters
found in dense "ridges" (Av > 100)
at the junctions of (supercritical) filaments

- massive accretion flows into junction regions
$\rightarrow>$ more clustered, more massive star formation ?

How do SMA observations help understanding the properties of:

- Filaments and clumps
- Embedded protostars

Star-formation related publications $=45 \%$ of SMA papers !

Clumps \& Filaments

Disclaimer:
I won't discuss
chemistry (see Jimenez-Serra's review)
the galactic center (see Johnston's talk)
magnetic fields (see Qiu's talk)
... but might still exceed my allocated time !

Low mass star formation : kinematics of filaments

Evidence of infall motions

H. Kirk, P. Myers et al. 2013, ApJ, 766, 115

In Serpens-South:

$>$ infall along main filament
$>$ radial contraction of main filament Accretion of background material through subfilaments

Massive star formation in massive star forming filaments

G32.03+0.05, Battersby, Myers, Keto, et al. in prep

Hierarchical Fragmentation in the Snake IRDC

Wang et al. (2013)

Detection limit of 1-3.5 M๑: 23 condensations.
Mass spectrum of condensations : power law with slope $\alpha=2.0 \pm 0.2$ turnover at $2.7 \mathrm{M} \odot$ condensation mass.

First study of the CMF.

Hierarchical fragmentation Clump masses are much larger than the thermal Jeans mass,
ndicating the importance of turbulence and/or magnetic fields in cloud fragmentation

- or sub-fragmentation at smaller scales.

Similar to what is found in IRDC clumps G28.34-P1 and G30.88-C2

Chemical differentiation : see Jimenez-Serra's talk

RESOLVING THE NATAL MOLECULAR CLOUD OF A FORMING YOUNG MASSIVE CLUSTER

Projected multi-scale mass maps of the Gíant Molecular Cloud (left) and central clump (right) in W49A, obtained from CO-isotopologue line ratios.

In total, the W49 complex contains about 10^{6} Msun in 60pc
50000 Msun in central 3pc
SMA reveals an intricate network of filaments feeding star-building material inward at $2 \mathrm{~km} / \mathrm{s}$.
Global gravitational contraction with localized collapse in a "hub-filament" geometry.
Potential to form a gravitationally bound massive star cluster

See also SMA observations of W33A by Galvan-Madrid et al. (2010)
... G28.34 by Zhang et al. (2009)
Galván-Madrid, R. et al. (2013)

THE GALACTIC CENTER CLOUD G0.253+0.016: A DENSE CLOUD WITH LOW STAR FORMATION POTENTIAL

(a) segmented $\mathrm{N}_{2} \mathrm{H}^{+}$data

Widespread SiO emission suggests that the cloud is currently forming in a collision of several clouds, thus implying a low cloud age

See also Longmore et al. (2012) and Johnston's talk

ALMA identification of a massive protostellar core at the center of a converging network of filaments

Peretto, Fuller et al. 2013, A\&A, 555, A112

$$
M_{\mathrm{H} 2}(\mathrm{MM1}) \sim 550 \mathrm{M}_{\odot} \text { in } \mathrm{D}=0.05 \mathrm{pc}:
$$

One of the most massive protostellar core ever observed in the Galaxy !

A possible progenitor of an OB cluster similar to the Trapezium cluster in Orion

Protostars

Disclaimer:
I won't discuss
chemistry (see Jimenez-Serra's review) outflows in Orion (see Zapata's talk) multiplicity in Class 0 protostars (see Chen's talk)

L1448-C (see Hirano's talk)
IRAS16293 (see Rao's talk)
magnetic fields (see Girart's talk)
.. but might still exceed my allocated time!

Conserving the angular momentum during collapse:

consequences

Opposing forces to gravity during collapse:
Outward pressure in all directions / Centrifugal force in the equatorial plane

Natural results:
> flattening of the envelope ie formation of disk with keplerian motions (viscosity)
\downarrow fragmentation of the envelope in components taking away their own angular momentum
if magnetized: launching of a high-velocity jet

The early stages of star formation: properties of embedded protostars

At most limited sub-fragmentation within the cores identified with Herschel in nearby clouds

Progenitors of individual stars or binary systems, not "clusters"
Herschel $\sim 15 "$ resolution at $\lambda \sim 200 \mu \mathrm{~m} \Leftrightarrow \sim 0.02 \mathrm{pc}<$ Jeans length @ $\mathrm{d}=300$ pc
L1448-C: Herschel/SPIRE $250 \mu \mathrm{~m} \quad$ L1448-C: IRAM-PdB interferometer 1.3 mm

Pezzuto, Sadavoy et al., in prep.
Maury et al. 2010

Candidate First Hydrostatic Cores

See also SMA observations of L1451-mm by Pineda et al. (2008)
SMA observations of B1-bN by Hirano \& Liu (2014)

The PROSAC Survey (Jes Jørgensen, Tyler Bourke, Chin-Fei Lee, Philip Myers, David Wilner, Qizhou Zhang, James Di Francesco, Nagayoshi Ohashi, Fredrik Schöier, Shigehisa Takakuwa and Ewine van Dishoeck)

PROBING THE INNER 200 AU OF LOW-MASS PROTOSTARS WITH THE SUBMILLIMETER ARRAY

In Class 0 protostars:
Jorgensen et al. $(2007,2009)$

no keplerian rotation detected

Brinch et al. (2009)

A keplerian disk around the Class 0 Protostar L1527

SMA unveils the structure of massive protostellar cores

IRAS18360: Qiu et al (2012)

See also :
Beuther et al. 2006 in IRAS1 8089
Keto \& Zhang (2009) in IRAS20126

Circumstellar Disks in Class I protostars

IRAS 04302+2247:
Class I protostar in Taurus-Auriga
IRAS 04302: SMA 0.89 mm continuum + HST/NICMOS

Wolf et al. (2008)

High Vel. (> $0.5 \mathrm{~km} \mathrm{~s}^{-1}$) Component
Keplerian Disk around 0.8 Msun
Low Vel. ($<0.5 \mathrm{~km} \mathrm{~s}^{-1}$) Component Outer Infalling Envelope with the Decelerated Infalling Velocity?

L1551: Takakuwa et al. (2013)

Resolving protostellar jets and outflows

IRAS04166

Wang et al. (2013)

See also Bourke et al. (2005) in L1014, Palau et al. (2005) in HH211. Lee et al. $(2007,2008)$ in HH212 + Hirano's talk

ALMA vs SMA

Complexity of Molecular outflows in IRAS 16293-2422
(Mizuno et al. 1990, Yeh et al. 2008; Rao et al. 2009)
CO 1-0
Quadrupolar outflow at
large scales $\sim 0.1 \mathrm{pc}$,

CO 2-1, 3-2
Bipolar/Quadrupolar outflow at
scales of 0.01 pc

IRAS 16293-2422

SMA

Rao, Girart et al 2009

ALMA Science Verification observations of IRAS 16293-2422

Same data but different interpretation!!!

(Loinard et al. 2013)

(Kristensen et al. 2013)

IRAS 16293-2422
SMA
Girart et al 2014 perpendicular CO outflows arising from

CO 3-2 compact only

SMA (David) beats ALMA-Science Verification (Goliath) !!
 Why???

ALMA vs JCMT CO 6-5: they look so different!

SMA, ALMA measure the visibility function:
2-D Fourier transform of the sky brightness

$$
V(u, v)=\int I(l, m) \cdot e^{j \cdot 2 \pi \cdot(u l+v m)_{d l} d m}
$$

Open questions to be addressed in the next decade !

Connect the scales!
 Statistics!

Dust properties!

What regulates the SFR ?

Role of magnetic fields in filaments and cores ?
Formation of disks: when anc how in low-mass protostars?
Accretion onto the protostars: episodic, rates?
Role of galactic flows and turbulence? Are there any disks at all in massive protostellar cores?

Massive star formation: dynamic or monolithic ?
Massive prestellar cores?
(chemistry, ionization rates, etc ...)
SMA: sensitive to both small and large scales + polarization capacities !

