Hot water in disks: inner hot disk, or wind?

Lars E. Kristensen SMA Fellow

Joanna Brown (former SMA fellow, now Boston Fusion), David Wilner (SAO/CfA), Colette Salyk (NOAO), Mark Gurwell (SAO/CfA)

H₂O: why?

- Main O reservoir in molecular gas
- Linking gas/grain chemistry and interactions
- Important interstellar coolant
- However, nearly impossible to observe from the ground: opaque atmosphere
- Ground-based H₂¹⁶O observations primarily masers

SMA & H₂O

- 183 and 321 GHz lines available (plus others toward AGB stars)
- Detected as masers toward galaxies, AGB stars, high- and lowmass protostars

e.g., Humphreys et al. 2005, Patel et al. 2007, van Kempen et al. 2009, Kaminski et al. 2013

Time

WISH observations: Caselli et al. (2012), Kristensen et al. (2012), Hogerheijde et al. (2011)

Hot H₂O: PACS

- Herschel-PACS
 observations at 4.5"
 resolution
- Hot H₂O emission offset from "disk" by > 1000 AU
- Origin: outflow (wind/jet)

PACS hot water in disks

- Observed the H₂O 63 μm
 line
- Emission correlates with the known jet-tracer [O_I] also at 63 μm
- Compact emission (< 9.4")
- Origin: disk or wind?

SMA observations

- Test interpretation: warm inner disk, or outflow/wind?
- Target: HL Tau, one of the brightest hot H₂O emitters
- Observed: Dec 18 2013,
 COM (2" beam ~ 300 AU
 @ 321 GHz)

Jata

- Reduced with CASA 4.2
- H₂O detected at 8σ
- Matches disk position, tentative $(3-4\sigma)$ extended emission
- Profile: blue-shifted and broad!

Kristensen et al. in prep.

Vibrational CO: wind

Herczeg et al. 2011

- 4.7 mu rovibrational emission from CO supports wind hypothesis
- Identical line profiles (within uncertainty)
- CO emission unresolved at 0.2" resolution (30 AU)

Excitation conditions

- Use 321 GHz and 63 μm lines to estimate excitation conditions, n, T, N(H₂O)
- Highly degenerate
- $N(H_2O) \sim 10^{19} \text{ cm}^{-2}$, $n(H_2) \sim 10^9 \text{--}10^{12} \text{ cm}^{-3}$, $T \sim 500 \text{--}1500 \text{ K}$, $r(H_2O) \sim 2 \text{ AU}$

Molecular protostellar winds

- Model calculations show molecules survive launching in MHD winds
- Physical conditions in wind close to what is inferred from radiative transfer

Panoglou et al. 2012

Implications / conclusions

- Hot PACS H₂O toward HL Tau originates in wind, not inner disk: a unique SMA result
- HL Tau is Class I/II, uncertain what implications for Class II/III sources are: needs to be tested
- 321 GHz H₂O emission appears to probe winds, need to test on sources with stronger winds / jets (Class 0's) with the SMA