The dynamics and star-forming potential of the massive Galactic centre cloud G0.253+0.016

Katharine Johnston
MPIA, Heidelberg
Collaborators:
Henrik Beuther, Hendrik Linz, Anika Schmiedeke, Sarah Ragan and Thomas Henning

The Galactic Centre Infrared Dark Cloud G0.253+0.016

Credit: Hubblesite

The Galactic Centre Infrared Dark Cloud G0.253+0.016

Projected 45pc from the Galactic Centre
Cold dust temperature: $\sim 18-30 \mathrm{~K}$
Dense: $2 \times 10^{4-6 \times 10^{5} \mathrm{~cm}^{3}}$
High mass: $0.8-7 \times 10^{5} \mathrm{M}_{\text {sun }}$

> However... minimal evidence for ongoing star formation

SMA and IRAM 30m Observations

$\nu \sim 218.9$ and $230.9 \mathrm{GHz}(1.3$ and 1.37 mm$)$
Angular resolution $\sim 4 \times 3$ " ($\sim 0.15 \mathrm{pc}$)
Spectral resolution: $1.1 \mathrm{kms}^{-1}$
Line and Continuum observations

$\nu \sim 217.3$ and 233.0 GHz Angular resolution ~ 12 " ($\sim 0.5 \mathrm{pc}$)
Spectral resolution: $0.3 \mathrm{kms}^{-1}$
Line observations

The density structure of G0.253+0.016

SMA 230.9 GHz or 1.3 mm dust continuum emission

Combined SMA and scaled
SCUBA $450 \mu \mathrm{~m}$ dust emission

Column density PDF

PDF has no power-law tail
No indication of gravitational collapse or star formation

Column density threshold for star formation

Is there a density threshold for star formation which applies to all clouds?
(e.g. Lada+2010, Heiderman+2010)

Column density threshold for star formation

Is there a density threshold for star formation which applies to all clouds?
(e.g. Lada+2010, Heiderman+2010)

G0.253+0.016 should produce ~ 40 YSOs with $>15 \mathrm{M}_{\text {sun }}$ which are not observed (see Kauffmann+2013)

Can turbulence explain SFR~0?

$$
\text { Virial Mass: } \quad M_{\mathrm{vir}}=\frac{5 R \sigma_{v}^{2}}{G \alpha_{\mathrm{vir}}}
$$

For a bound cloud or core with radius R :

$$
N_{\text {th }} \propto M_{\text {vir }} / R^{2} \propto \sigma_{v}^{2}
$$

Can turbulence explain SFR~0?

Scaled threshold column density by ratio of $\sigma_{v}{ }^{2}$:

$$
\begin{gathered}
N_{\text {th }}^{\prime}=N_{\text {th }}\left(\frac{\sigma_{\text {Brick }}}{\sigma_{\text {Gal.disk }}}\right)^{2}{ }^{2.5 \mathrm{~km} / \mathrm{s}} \\
N_{\text {th }}^{\prime}=0.75 \mathrm{~g} \mathrm{~cm}^{-2}
\end{gathered}
$$

But still expect $10 \mathrm{YSOs}>15 \mathrm{M}_{\text {sun }}$!

Can turbulence explain SFR~0?

Scaled threshold column density by ratio of $\sigma_{v}{ }^{2}$:

$$
\begin{gathered}
N_{t h}^{\prime}=N_{t h}\left(\frac{\sigma_{\text {Brick }}}{\sigma_{\text {Gal.disk }}}\right)^{2} \longleftarrow 14 \mathrm{~km} / \mathrm{s} \\
N_{\text {th }}^{\prime}=0.75 \mathrm{~g} \mathrm{~cm}^{-2}
\end{gathered}
$$

But still expect $10 \mathrm{YSOs}>15 \mathrm{M}_{\text {sun }}$!
Other aspects... background/average density, evolution?

SMA Detected Lines

Detected lines:

SiO, CH3OH, HNCO, SO - Shock tracers
${ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}, \mathrm{C}^{18} \mathrm{O}$ - Diffuse gas tracers
$\mathrm{H}_{2} \mathrm{CO}$ - Dense gas tracer, temperature probe

Temperature from $\mathrm{H}_{2} \mathrm{CO}$

Ratio between integrated flux:
$\mathrm{H}_{2} \mathrm{CO}_{03} \rightarrow \mathbf{2 0 2} / \mathrm{3}_{21} \rightarrow \mathbf{2}_{20}$
$N\left(\mathrm{H}_{2}\right) \sim 10^{23} \mathrm{~cm}^{2} \mathrm{X}\left(\mathrm{H}_{2} \mathrm{CO}\right) \sim 10^{-9}$

$\mathrm{n} \sim 10^{4}-10^{5} \mathrm{~cm}^{-3} \quad \mathrm{~T} \sim 100$ s of K
(see Mills \& Morris 2013 and
Rodriguez-Fernandez+2001)

Average line ratio: 1.4
Corresponding to: $\mathrm{T}_{\mathrm{K}}>320 \mathrm{~K}$

Evidence for Cloud Collisions

Black: $\mathrm{CH}_{3} \mathrm{OH}$
Green: ${ }^{13} \mathrm{CO}$

Evidence for Cloud Collisions

Black: $\mathrm{CH}_{3} \mathrm{OH}$ Green: ${ }^{13} \mathrm{CO}$

Evidence for Cloud Collisions

Are super star clusters formed by cloud collisions?
(Fukui+ 2013, Higuchi+2014)

Conclusions

- Column density PDF has no power-law tail, consistent with no or little star formation
- Not one column density threshold for star formation! Increased due to turbulence and background average density
- High gas temperatures on size-scales traced by the SMA beam ($\sim 0.15 \mathrm{pc}$)
- Evidence for cloud collision with another cloud at $70 \mathrm{kms}^{-1}$

See our paper on astro-ph!
arXiv:1404.1372

Column density PDF

$$
\sigma_{s}^{2}=\ln \left[1+b^{2} \mathcal{M}_{s}^{2} \beta /(\beta+1)\right]
$$

b - ratio of compressive to total power in the turbulent driving (=0.4)
M_{s} - Mach number (=7.6)
β - ratio of gas to magnetic pressure ($\beta=8 \pi \rho c_{s}^{2} / B^{2}$)
$\sigma_{s}=\xi \sigma_{\eta} \quad \xi=2.7 \pm 0.5 \quad$ (Brunt+2010)

For $\sigma_{\eta}=0.30, B=0.5 \mathrm{mG}$ required to produce the observed PDF Measured value: 0.1 mG to a few mG (Ferrière +09)

The Galactic Centre Environment

The Galactic Centre Environment

The Galactic Centre Environment

(Arm I and Arm II originally shown in Sofue+ 1995)

The Galactic Centre Environment

(Arm I and Arm II originally shown in Sofue+ 1995)

The Galactic Centre Environment

The Galactic Centre Environment

Sawada+ 2004: CO \& OH, 70° wrt line of sight Reid+ 2009: Trig. Parallax
Ryu et al. 2009: X-ray light echo

Δ - variance Spectrum

$$
\begin{array}{cl}
\text { SFE }=20 \%-.- & \text { Increasing } \alpha \\
\text { SFE } & =5 \%-- \\
\text { SFE }=0 \% \ldots . . & \text { for higher SFE } \\
t=0 t_{\mathrm{ff}} &
\end{array}
$$

(Federrath+2013)

Observation

Grey line: SCUBA-only
Black line: combined SMA+SCUBA
Red line: fit to combined SMA+SCUBA Δ-variance
Slope: 1.91 ± 0.04
(corresponding to: $\alpha=-1.91 \pm 0.04$)

Massive star formation in the Brick?

Colourscale: SMA 1.3mm continuum Red contours: 25 GHz continuum (Mills+ in prep.)

The brightest source at 25 GHz has $F_{\text {peak }} 0.13 \mathrm{mJy} /$ beam and has a flat spectrum.
$\mathrm{F}_{\text {peak }}($ dust, 1.3 mm) ~ $120 \mathrm{mJy} /$ beam.
Therefore the extrapolated ionized gas emission does not contribute significantly to the flux of this source at 1.3 mm

Evidence for Cloud Collisions Shock tracers

Similar distribution to collisionally excited $\mathrm{CH}_{3} \mathrm{OH}$ masers at 36 GHz (Mills + in prep.)

SMA and IRAM 30m Observations

$\nu \sim 218.9$ and 230.9 GHz (1.3 and 1.37 mm) Angular resolution $\sim 4 \times 3$ " ($\sim 0.15 \mathrm{pc}$)
Spectral resolution: $1.1 \mathrm{kms}^{-1}$
Line and Continuum observations

$\nu \sim 217.3$ and 233.0 GHz
Angular resolution ~ 12 " ($\sim 0.5 \mathrm{pc}$)
Spectral resolution: $0.3 \mathrm{kms}^{-1}$
Line observations

