Ultra Dusty Milky Way/LIRG Galaxies Behind Massive Lensing Clusters

Li-Yen Hsu

Institute for Astronomy, University of Hawaii

Lennox Cowie (UH), Amy Barger (UW-Madison, UH), Wei-Hao Wang (ASIAA)

Chian-Chou Chen (Durham), Jonathan Williams (UH)

Submillimeter Galaxies

SMGs are dusty, star-bursting galaxies that cannot be easily picked out in the rest-frame optical/UV samples.

Observations at 850 μ m with single-dish telescopes cannot detect faint SMGs below the confusion limit (~ 2 mJy), corresponding to an IR luminosity of 10^{12} L_{\odot} (ULIRG).

Faint SMGs

Are faint SMGs less dusty star-forming galaxies that correspond to optical/UV selected galaxies?

Observations of Massive Clusters

Observations of massive lensing clusters can probe lensed galaxies with IR luminosity < 10^{12} L $_{\odot}$ (LIRG) or even < 10^{11} L $_{\odot}$ (Milky Way)

SCUBA-2 Lensing Cluster Surveys

- Observing at 450 and 850 µm simultaneously
- Eight massive clusters, including four HST frontier fields

magnification maps assuming source planes at z = 3

SCUBA-2 Lensing Cluster Surveys

SCUBA-2 Lensing Cluster Surveys

Counterpart Identification

- JCMT(15m) beam sizes (FWHM) :
 7.5" at 450μm 14.5" at 850μm
- Radio interferometry (biased against high-z galaxies)
- Submm interferometry

A1689 (HST F814W)

JCMT 850µm beam

SMA Follow-up at 345GHz

Chen et al. 2014

Results

All the five sources detected in Chen et al. (2014) have intrinsic fluxes of ~ 0.1-0.8 mJy, the critical flux range for SFR ~ 100 M_o/yr

Results

- Only two out of five have optical/NIR counterparts
- Low NIR/submillimeter flux ratios

We need a larger sample of faint SMGs!

Current&Future Work

- Image over 30 faint SMGs in our cluster fields with SMA and the new SWARM correlator
 - better estimates of lensing magnifications
 - multi-wavelength studies
 - redshift distribution
 - NIR morphology and spectroscopy of the optically bright sources
 - future ALMA CO or [CII] line surveys on optically faint objects

Many low-luminosity, dust-obscured star forming galaxies at high redshifts might not be included in the optical/UV star formation history

Thank you!

HST Frontier Fields

The majority of submm background can be measured with cluster lensing

Chen et al. 2013

The majority of submm background can be measured with cluster lensing

Chen et al. 2013