Disks evolution with the SMA






Transitional or cold disks
WHAT?

eDisks where dust clearing has begun

eRare, presumably short-lived, phase
between dusty protoplanetary disk
starwithfll disk | : and star with planetary system

e|dentifiable through mid-IR
photometry and spectroscopy
(Spitzer)

WHY?

ePotentially trace young/forming
planets

Inner Gap in Circumstellar Disk  Spitzer Space Telescope ¢ IRS

NASA / JPL-Caltech / D. Watson [University of Rochester) ssc2004-08c [ J LOO k at h OW d |S kS d |S p e rse




DEC offset (arcsec; J2000)

Are there disks W|th holes?

SMA very extended configuration

DEC offset (arcsec; JZOOO)
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modeling protoplanetary disk structures
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[Andrews et al. 2008; HST/NICMOS image: courtesy of G. Schneider]



Millimeter Imaging of a Cavity in LkCa 15
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Millimeter Imaging of a Cavity in UX Tau A

Espaillat et al. 2007b, 2011
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signatures of planet-disk interactions

[Masset 2002] [Andrews et al. 2011]
a giant planet opens a gap optically thin disk “cavity”
+
intercepts the mass flow cavity radius ~ orbital period

!

inner disk cut-off/depleted cavity mass ~ planet mass



disk mass: M, [M,,]

alternative mechanisms to open disk cavities

[Clarke et al. 2001; Alexander et al. 2006]

31 3
°
10F 4 [ 1 — I X=RAY
] . 17 | 1%t
: ° s | 1% |
o ® 2 [ X-RAY 1 2 T
$ o = | * 1 = | ®
X L ] X L ]
= )
% . 1% |
o X { o s
1k 1 = 30F «—e o 1 & 30 o e
9 ‘ : L ] 7 . 0 L]
£ £
5| Tl 5| D A
ERN B
o ? 121 ?
FUV/EUV lE L 4 ?
01 - * [ ] *
t 1 PP EPEPEPEP PP S ] i I IR SPEPEPEPEPEPEPEPEN SPEP PP SRR 29 ———al al
-1 -10 -9 -8 -7 -1 -10 -9 -8 -7 10 100
accretion rate: log(dM/dt) [Mg/yr] accretion rote: log(dM/dt) [Mo/yr] cavity radius: R, [AU]

[Alexander & Armitage 2007; Owen et al. 2011; Andrews et al. 2011]

for this kind of transition disk, wind dispersal is ineffective




alternative mechanisms to open disk cavities

option 2: particle growth

need a very large dead zone
low ionization: quiescent: rapid growth

accretion flow

A

“dead” zone

no small grains in surface flows

no fragmentation in dead zone

................................
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Some Disk Holes Contain Small Dust
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Chemical richness and source variability

as []

o o Om

@

10

'Q,

%
)
Y

&

8| e

il

0

o

5 0 -5
vAav.["-]

DM T

R %g}}%%}g

IM Lup

SEEINEIEIC

|

ur V40;46 Sag

AS 209

HD 142527

NN N

SAO 206462

MWC: 480

i e
[ I

L

Visg [km/s]

0 510 0 510 0510 0510 0510 0510 0510 0510 0510 0510 0510 0 510

CN 2,-1,

CN 2,-1
X 0% #
DCN 3-2
HCN 3-2
x 0.5
H,CO 3-2
H,CO 4-3
N,H* 3-2

DCO* 3-2

HCO* 3-2
x 0.5



Transition vs. Full Disks:

A disconnect between the inner and outer disk
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CN vs.
HCN

*HCN+UV—CN; CN
should be abundant at
high UV

% Surprisingly constant
CN/HCN emission ratio

% Disk averaged CN/
HCN ratio is NOT a good
radiation tracer.

* Evidence for more
extended CN emission
compared to HCN -- an
ISRF driven outer disk
chemistry?



summary: disks and planet formation

DoAr 25 LkCa 15
870 um 880 um

disk structures planet formation
measured dust densities in nearby disks evidence of planet-disk interactions
need state-of-the-art analysis tools radio images of disks can help find planets

new constraints on viscous evolution foreshadowing ALMA planet searches



