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etic fields & Turbulence
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Rapid rotating envelope, weak B field
(a) L=3 Nnc=5.2x10° (cm?) (b) L=4 Nc=6.5x10* (cm?) (c) L=7 Nc=5.7x10° (cm?) (d) L=13 Nc=8.3x10"" (cm?)
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Figure 9. The magnetic field lines at the same epoch as Fig. 8. Each frame denotes a cube with side-lengths (a) 1.7 x 10° au, (b) 8.4 x 10* au, (c) 1.1 x
10* au, and (d) 1.6 x 10? au, respectively. The grey-scale and arrows have the same meaning as in Fig. 5.

Slow rotating

envelope,
strong B field

Machida et al. 2005, 2006




lar momentum: magnetic braking

Slide from Zhi-Yun Li & Richard Mellon (Univ. of Virginia):

Possible Observational Signatures

* Dynamically important magnetic field

Zeeman measurements (lack of suitable molecules?)
polarization of dust emission (e.g., Girartetal. 06)
flattened mass distribution - pseudodisk

(e.g., Galli & Shu 93, Looneyetal. 07, Kwon's poster)

* Ambipolar diffusion

difference in ion and neutral infall speeds, a fraction of ¢, (ALMA?)
pause in infall - evidence for accumulation of magnetic flux
associated with central (stellar) mass?
“Magnetic braking
spin-down of infalling gas (spatially resolved spectra, ALMA? Molecules '\

where does the extracted angular momentum go?
expelled in a low speed wind if B is strong
rotation
stored in puffed up circumstellar structure supported by torgidal

magnetic field and rotation

detection complicated by protostellar outflows

Mellon & Li 2008
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-Vhy care about polarization?

Polarization 1s the characteristic signature of

magnetic fields

Dust polarization:

Emission & Absorption

Caused by elongated dust grains
Polarize emission/absorption is
perpendicular/parallel to B,
No direct information of B strength

Zeeman Effect

Observable in those species with an
unpaired outer e
Direct measure of Bl in the l.0.s.
Few species available: CN, CH, CCS,
SO

Polarized Molecular Line
Emission (Goldreich-Kylafis

Effect)

Measure magnetic field direction in the plane of
the sky
Polarization either parallel or perpendicular to
Bpos
Degree of polarization depends on:
optical depth,
degree of anisotropy,
ratio of collisional excitation to radiative rates
PA,, depend on the angles between the l.0.s, B
and the axis of symmetry of the velocity fields
So many constrains makes detection very

difficult




NGC 1333 IRAS 4A: A Class O Low Mass YSO
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Large scale well collimated
molecular outflow (Blake et al.

1995; Choi 2005)

Kinematics signatures of: infall,
outflow, rotation and turbulence
(diFrancesco et al. 2001)

Age of 10* yrs from accretion
rate

Located in Perseus (300 pc)

Resolved into binary components (Lay
et al. 1995; Looney et al. 1997)

Components 4A1 and 4A2 at a
separation of 2" with total mass ~ 1 Mg




CO polarization from a molecular outflow

BiMA C array observations by Girart, Rae & Crutcher
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* Simultaneous detection of polarization in CO and dust
* Magnetic field inferred form the two type of pol are in agreement



NGC 1333 TRAS4A - B vectors

® Hour glass shape of the
magnetic field structure in the
circumbinary envelope

*The field axis seems well
aligned with the minor axis

Girart, Rao & Marrone 2006, Science




More about B in NGC 1333 TRAS4A

Figure from Attard et al. (2009)
Large scale B vectors from CSO SHARP
Polarimeter
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(Chandrasekhar & Fermi 1953; Mouschovias 1991; Scheuling

1998; Crutcher 1999; Lai et al. 2002)

Input parameters:

°n(H,) = 4x107cm> °*M = 1.2

Mg

°* N(H,)=8x10**cm2 ®d0, ~ 5°

® Avyp =~ 0.5 km s

Output parameters:

¢ Bpos ~ 5mG ¢ Bturb =~ 0.1

*MtB =2 .ftension/ fglravity ~0.2

Girart, Rao & Marrone 2006
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Galli & Shu (1993) IRAS 4A Envelope

Allen et al. (2003)
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IRAS 4A: Modelling the B field.
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* Galli Shu 1993.
Collapse of a singular
isothermal sphere
threaded by an initially
uniform magnetic field.

* Allen al 2003. Similar
to Galli & Shu 1993 but
numerical, taking into
account rotation. Initially
core already flattened

- B,=0.4-0.9 mG

*t=10%yr

Gongalves, Galli & Girart 2008, A&A; Frau, Galli, Girart 2011, in preparation




IRAS 4A: Polarized emission from the disk?
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Declination

Another Class O0: IRAS 16'29,3-‘242'2 '
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Source A shows multiplicity o x I
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spectral indices g = | g
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IRAS 16293: A complex magnetic field

- Magnetic field from SMA observations -

* The dust emission is well resolved in [
two cores separated by 5" .

« The magnetic field information shows
that A is pinched, whereas source B _
appears to be uniform i

- A fit with a set of parabolic functions T e R

restricted to source A fits also B!

* n(H,) = 5x107 cm™
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« Supercritical cores

Rao, Girart et al. 2009, The Astrophysical Journal




IRAS 16293: rotation around Source A

e H3CO* 4-3 is extended N-S Py
over ~2500 x 1500 AU and '
centered around source A

—24°28'40" |

* Source B appears to be devoid
of the H*CO™* emission

* Velocity gradient along N-S of
0.31 km/s or 4.5 x 1012 s~1

24°28'30" -

& (J2000)

e Magnetic energy is comparable
with centrifugal energy -
* Rotation axis aligned with the i

outflow axis but perpendicular to
the B field direction 77?7?

a (J2000)
1 L I L 1

Rao et al. 2009,Ap] - '16;'32I'"2I3?5. 23% I I22|?5. =g '22I.‘o 3




IRAS 16293: a puzzling source??
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Magnetic fields, rotation & infall fowards 631.41+0.31

~ + G31.41 is a hot core (without UCHII) at a diStance of 7.9 kpc

+ G31.41 luminosity, 3 10° L, suggasts that it harbors O7-0O8 protostars




I e ot molecular core (HMC) in 631.41:0.31
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* Beltran et al. 2004 detected a massive, dense and hot rotating “toroid”
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- The mass of the toroid, 490 M, is much larger than the dynamical mass

needed for equilibrium, 44 Mg : the hot core is unstable and undergoing

gravitational collapse.



the 631.41+0.31 HMC
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 The signature is well seen in low energy transitions (<100K) and is probably due to a very hot
compact dust component around the massive (proto)stars.

» There is a clear inverse P-Cygni in C34S 7-6, H,CO 3, ,-2, ; and CN 2-1 profile that suggests
infalling gas.



Magnetic fields threading the 631.41+0.31 HMC
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* Hot Core elongated in the NE-SW direction M.ore=577Mg n(H2) =8x10% cm-3

* The dust polarization pattern yields an hourglass shape morphology, similar to the one
found in IRAS4A but the scale and mass involved are much larger

- B lines perpendicular to the major axis of the hot core Girart et al. 2009



Rotation towards 631.41+0.31

+ « The velocity gradient (due to rotation) in the hot core is
1 . along the major axis, where the pinched magnetic field
lines are observed o
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- Compact lines trace typically higher excitation energy
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* Methanol transitions are likely optically thick, so each 85t
line traces a shell with a specific radius :
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range, that is a smaller rotation velocity il

v
C13CH,0H 14, 149 |

Girart et al. 2009 B, i

-2 0 2

~
>




netic Braking towards 631.41+0.31 ?!

3 7 - Rotation and radius has been measured from
the Half Maximum contour of different
methanol transitions in the zero and first order
- cnp:g:sﬁ,x% C”*‘OI”ZI;?A + 1 maps of the integrated emission.

O % - * The measured spin velocity of the hot core
decreases with decreasing radius

)
|

PCH,0H 12,-12) A CH,0H7-6, A

CH,OH 7,6, E vi=2

5 1 * Therefore the angular momentum is not
l" conserved: Magnetic braking
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. High-mass star forming core: UCHII G5.89-0.39

- G5.89 is a shell-like ultracompact HIl region at a distance of 2 kpc (eg. Acord et al. 1998)

+ G5.89 contains an 05 V star (Feldt et al. 2003).
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0400 * H,O and OH masers indicate that

°% further star formation activities are on
going.

04" -
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08" -
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- The gas mass associated with the
dust core is M,,,.~280M, and the
s volume density n(H2) =2x107 cm-3
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, * The polarization pattern shows an
apparently not very well organized
pattern
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Tang, Ho, Girart et al. 2009, ApJ



G5.89-0.39

5o - ' 0.025
| - Significant depolarization over a wide region

il .. Of the dense molecular envelope

S o400 . . .
S * Most of the polarized emission arises around
AV,
= 0015 the UC HII
o 04
D o ° Bfield structures are already overwhelmed
and dominated by the radiation, outflows, and
~24'0412"- turbulence from the newly formed massive
. stars.
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DEC offset (arcsec; J2000)

A Legacy project: Filaments, Star Formation and
Magnetic Fields

The goal is to make significant progress in understanding the role of magnetic

10

0.01

5x10~3

RA offset (arcsec; J2000)

-5

0.02 0.025

0.016

fields in the formation of filaments, dense cores and massive stars.

PI: Q. Zhang (CfA)

Ongoing observations: some
tracks already obtained in
compact and subcompact
configurations

NGC 6634 v



* SMA has already provided very important information of the role of
magnetic fields in star forming region at 1"

* SMA is an unique instrument to do submm polarization at high
angular resolution
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* Magnetic fields seem to play an important role in the formation of low
mass and high mass stars




