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Exploring	the	Early	Universe	

Madau	and	Dickinson,	2014	
Decarli	et	al.	2016	

A	Cosmic	History	of	Molecular	Gas	



Direct	Detection	

Stacking	

Intensity	Mapping	

100	sq.	arcmin	

ALMA	ASPECS	
4	sq.	arcmin	(UDF)	

Waste	no	photon!	



Other	Benefits	of	Large	Volumes	
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Understanding	the	complexity		
of	molecular	gas	

A	wealth	of	existing	and	
upcoming	high-redshift	
extragalactic	data	

Cosmological	applications	
at	high	redshift	

A	Cosmic	History	of	Molecular	Gas	



Defining	an	optimal	instrument	
Frequency	coverage	between	∼	1	cm	and	sub-mm	
Moderate	spatial	resolution	(1”-3”)	
Moderate	spectral	resolution	(<	300	km/s)	
Good	survey	speed	(∝​𝑁↓beam ​[​𝑁↓ant ​𝐷↓ant / ​
𝑇↓sys ]↑2 𝐵)	
Good	amount	of	integration	time	
Good	control	over	systematics	
Large	FoV	+	bandwidth	
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SMA	suited	for	conducting	
large-volume	surveys,	
particularly	in	the	wSMA	age	
(and	beyond)	



Defining	an	optimal	instrument	
2-mm(+3-mm?)	or	490	GHz	guest	instrument	
	
	
wSMA	receiver	+	correlator	upgrades	+	multi-beam	
OTF	+	total	power	measurements,	expanding	hours	
Ongoing	hardware	upgrades	(pre-wSMA)	
wSMA	+	multi-beam	
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SMA	suited	for	conducting	
large-volume	surveys,	
particularly	in	the	wSMA	age	
(and	beyond)	



CO/[CII]	Intensity	Mapping	

VLA,	ACA	and	SMA	are	well-suited	for	intensity	
mapping	cross-correlation	studies!	

The	Millimeter	Intensity	Mapping	Experiment	(mmIME):	
“It	only	looks	like	there’s	nothing	there”	

Geoff	Bower	(ASIAA)	
Tzu-Ching	Chang	(ASIAA)	
Anastasia	Fialkov	(CfA)	
Attila	Kovacs	(CfA)		
	

Avi	Loeb	(CfA)	
Natalie	Mashian	(CfA)	
Dan	Marrone	(Arizona)	
Wei-Hao	Wang	(ASIAA)	
	

Garrett	“Karto”	Keating	(PI;	CfA/SAO)	
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mmIME	Survey	Targets	
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Stage	I:	
-  Appx.	600	hours	
(continuous)	

-  5	targets	(SXDS,	
COSMOS,	AEGIS,	
VIPERS,	DEEP2)	

-  192-242	GHz*	
-  100	sq.	arcmin	
-  ∼0.5	mJy	continuum	
detection	

-  ∼3	Jy	km/sec	line	
detection	

-  Power	sensitivity	of	
6× ​10↑2  𝜇​K↑2  Hz sr		



Cosmic	Molecular	Gas	

Keating	et	al.,	2016	
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Keres et al. (2003) 

Walter et al. (2014) 
Decarli et al. (2016)

Keating et al. (2016) 
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Science	Goals	with	mmIME	
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Cosmic	molecular		
gas	abundance	

Physical	conditions	of	
high-z	molecular	gas	

Feedback/quenching	at	
high	redshift	

Resolving	sources	in	
the	sub-mm	sky	

Probing	galaxies	in	the	epoch	
of	reionization	via	[CII]	

Suitability	of	cold	gas	
tracers	for	cosmology	
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Getting	to	 ​𝜼↓𝐨𝐛𝐬 =𝟏	

Making	large-volume	surveys	feasible	requires	high	operating	efficiency	
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Improvements	can	be	realized	with:	
•  Better	pointing	methods	
•  Methods	for	dealing	with	atmospheric	phase	fluctuations	
•  Better	monitoring	of	array	health	status	
•  Reducing	time	required	for	priming/switching	projects	
•  Improving	calibration	methods	(particularly	bandpass)	
•  Reducing	observing	inefficiencies	that	cost	1-3	integrations	per	

target	switch	(can	be	significant	for	mosaicking)	



Key	Technical	Developments	
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§  Faster/more	robust	
interferometric	pointing	
Ø  Dual-Rx	
Ø  Hex-Pattern	
Ø  Phase-solving	

§  Automated	Pointing	
Ø  Running	since	5/2018		



“Oy,	this	guy	again?”	

∼6-10	minute	timescale	

∼1	minute	timescale	

Key	Technical	Developments	

A	Cosmic	History	of	Molecular	Gas	

Mitigating	phase	fluctuations:	
§  Long	duration	

Ø Mitigated	with	shorter	
CAL-SOURCE-CAL	loop	

§  Short	duration	
Ø  Early	success	w/	tip-tilt	

model	with	antenna	and	
phase	monitor	data	



Key	Technical	Developments	

A	Cosmic	History	of	Molecular	Gas	

Automated	processing	in	
MATLAB	(exportable	to	
other	languages)	
•  Valuable	array	health	

monitoring	information	
•  Reduce	potential	barrier	

for	new	users	(deliver	
gains	+	flags	+	weights)	
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Comments	and	Questions	

garrett.keating@cfa.harvard.edu	

•  IM	+	Direct	Detection	of	CO/[CII]	with	SMA	offers	an	inexpensive	
way	to	probe	cold	gas	at	high	redshift	with	large-volume	surveys	

•  Pilot	survey	results	from	mmIME	are	promising,	following	a	
similar	development	path	as	previous	work	w/	CARMA	

•  Technical	development	for	supporting	novel	observing	models	
(e.g.	daytime	observing)	is	moving	forward	



Efficiently	Extracting	Emission	

Wide-Field	Wideband	Surveys	with	ngVLA	 4/12	

Direct	Detection:	Faint	objects	
can	be	prohibitively	expensive.	

Source	Stacking:		Needs	ancillary	data	

Intensity	Mapping:		
Excellent	for	faint	sources,	
requires	strong	control	of	
systematics.	
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