The **SMA** Perspective on Planet-forming Disks around Young Stars

Sean Andrews

Harvard-Smithsonian CfA

goal:

a planet formation model grounded in observations

requirements:

- enough stuff + enough time
- evolution of mass distribution
- viscous + material evolution
- dissipation/metamorphosis

SMA 880 μm

50 AU cavity

[Andrews et al., in prep]

[NASA/JPL/SSC/T. Pyle]
measuring the mass content of a protoplanetary disk

we assume most of the mass is cold, molecular gas (H₂)

problem: “dark matter”

rely on dust as a tracer

(it dominates the opacity)
measuring the mass content of a protoplanetary disk

we assume most of the mass is cold, molecular gas (H$_2$)

problem: “dark matter”

rely on dust as a tracer

(it dominates the opacity)

- scattered light: flaring/size

[Schneider+ 2003; Kudo+ 2008; Fujiwara+ 2006]
measuring the mass content of a protoplanetary disk

we assume most of the mass is cold, molecular gas (H$_2$)

problem: “dark matter”

rely on dust as a tracer

(it dominates the opacity)

- scattered light: flaring/size
- IR: flared surface/heating

[Schneider+ 2003; Kudo+ 2008; Fujiwara+ 2006]
measuring the mass content of a protoplanetary disk

we assume most of the mass is cold, molecular gas \((\text{H}_2)\)

problem: “dark matter”

depend on dust as a tracer

(it dominates the opacity)

- scattered light: flaring/size
- IR: flared surface/heating
- radio: mass in the midplane

\[
\text{emission} \propto \kappa \nu \Sigma T
\]

[Schneider+ 2003; Kudo+ 2008; Fujiwara+ 2006]
measuring the mass content of a protoplanetary disk

we assume most of the mass is cold, molecular gas (H₂)

problem: “dark matter”

rely on dust as a tracer
(it dominates the opacity)

- scattered light: flaring/size
- IR: flared surface/heating
- radio: mass in the midplane

emission ∝ κνΣT

[Schneider+ 2003; Kudo+ 2008; Fujiwara+ 2006]
an appropriate model for the density structure?

a density puzzle:

if Σ is a power law+edge,
dust sizes $<<$ gas sizes (!)

[Pietu et al. 2005; Isella et al. 2007]
an appropriate model for the density structure?

a density puzzle:

if Σ is a power law+edge, dust sizes $<<$ gas sizes (!)

[Pietu et al. 2005; Isella et al. 2007]
an appropriate model for the density structure?

a density puzzle:

if Σ is a power law + edge, dust sizes $<<$ gas sizes (!)

[Pietu et al. 2005; Isella et al. 2007]

the solution:

Σ has a large-R taper; expected for accretion disks

no sharp (outer) edges!

[Hughes et al. 2008]
disk density structures from radio interferometry data

parametric model:

\[\rho = \frac{\Sigma}{\sqrt{2\pi H}} \exp \left[-\frac{1}{2} \left(\frac{Z}{H} \right)^2 \right] \]

+ starlight, dust population

+ radiative transfer calculations

resolved radio emission \(\propto \kappa \nu \Sigma T \)

IR spectrum/scat. light/CO \(\sim T \)

disk density structures from radio interferometry data

parametric model:

\[
\rho = \frac{\Sigma}{\sqrt{2\pi H}} \exp \left[-\frac{1}{2} \left(\frac{Z}{H} \right)^2 \right]
\]

+ starlight, dust population

+ radiative transfer calculations

resolved radio emission \(\propto \kappa \nu \Sigma T\)

IR spectrum/scat. light/CO \(\sim T\)

data
disk density structures from radio interferometry data

parametric model:

\[\rho = \frac{\Sigma}{\sqrt{2\pi}H} \exp \left[-\frac{1}{2} \left(\frac{Z}{H} \right)^2 \right] \]

+ starlight, dust population

+ radiative transfer calculations

\[\text{resolved radio emission } \propto \kappa \nu \Sigma T \]

\[\text{IR spectrum/scat. light/CO } \sim T \]

data
disk density structures from radio interferometry data

parametric model:

\[\rho = \frac{\Sigma}{\sqrt{2\pi}H} \exp \left[-\frac{1}{2} \left(\frac{Z}{H} \right)^2 \right] \]

+ starlight, dust population
+ radiative transfer calculations

\[\text{resolved radio emission } \propto \kappa T \]

\[\text{IR spectrum/scat. light/CO } \sim T \]

new results: SMA disk survey
0.85 mm, 0.3”=20 AU resolution
2-D Monte Carlo RT (RADMC)

disk density structures from radio interferometry data

parametric model:

\[\rho = \frac{\Sigma}{\sqrt{2\pi H}} \exp\left[-\frac{1}{2} \left(\frac{Z}{H}\right)^2\right] \]

+ starlight, dust population
+ radiative transfer calculations

resolved radio emission \(\propto \kappa_{\nu} \Sigma T \)

IR spectrum/scat. light/CO \(\sim T \)

new results: SMA disk survey
0.85 mm, 0.3”=20 AU resolution
2-D Monte Carlo RT (RADMC)

disk density structures from radio interferometry data

parametric model:

\[\rho = \frac{\Sigma}{\sqrt{2\pi}H} \exp \left[-\frac{1}{2} \left(\frac{Z}{H} \right)^2 \right] \]

+ starlight, dust population

+ radiative transfer calculations

resolved radio emission \(\propto \kappa \nu \Sigma T \)

IR spectrum/scat. light/CO \(\sim T \)

new results: SMA disk survey
0.85 mm, 0.3”=20 AU resolution
2-D Monte Carlo RT (RADMC)

residuals

disk density structures from radio interferometry data

parametric model:

\[\rho = \frac{\Sigma}{\sqrt{2\pi H}} \exp\left[-\frac{1}{2}\left(\frac{Z}{H}\right)^2\right] \]

+ starlight, dust population
+ radiative transfer calculations

resolved radio emission \(\propto \kappa \nu \Sigma T \)

IR spectrum/scat. light/CO \(\sim T \)

new results: SMA disk survey
0.85 mm, 0.3”=20 AU resolution
2-D Monte Carlo RT (RADMC)

can these disks make planets?

mass distributions:

- $\Sigma \sim$ solar nebula (10-40 AU)
- $\Sigma \sim 1/R$ (\sim20-100 AU)
- $1/\exp(R)$ (larger R)
- $mass \sim 0.01 \, M_\odot$ (40-50%)
- $0.1 \, M_\odot$ (<1%)

disk structure “snapshots”:

- viscosity \sim linear in R
- $+ \, \dot{M} = \alpha \sim 0.001$-0.01
- massive disks are larger
the evolution of disk structure: slow, then fast

.timeline

- formation
- viscous evolution (particle growth?)
- dissipation
- accretion + diffusion
- inside-out clearing (?)
- sedimentation + growth

1/2-life ~3 Myr
dust < few AU

[L-B & P 1974]
[Mamajek 2009]
the evolution of disk structure: slow, then fast

timeline →

formation viscous evolution (particle growth?) dissipation

? accretion + diffusion

inside-out clearing (?)

dust < few AU 1/2-life ~3 Myr

sedimentation + growth

[![Graph showing disk structure evolution](image)]
the evolution of disk structure: slow, then fast

formation

viscous evolution (particle growth?)

dissipation

accretion + diffusion

inside-out clearing (?)

dust < few AU
1/2-life ~3 Myr

sedimentation + growth
the evolution of disk structure: slow, then fast

formation \rightarrow \text{viscous evolution (particle growth?)} \rightarrow \text{dissipation}

accretion + diffusion \rightarrow \text{inside-out clearing (?)}

sedimentation + growth

\[\log \Sigma [g/cm^2] \]

\[\text{radius [AU]} \]

\[0.100 \text{ Myr} \]

\[\text{IR excess fraction [%]} \]

\[\text{cluster age [Myr]} \]

\[\text{dust < few AU} \]

\[1/2\text{-life } \sim 3 \text{ Myr} \]

\[\lambda F_{\lambda} [\text{erg s}^{-1} \text{cm}^{-2} \text{Å}^{-1}] \]

\[\lambda [\mu\text{m}] \]

\[\text{[Furlan et al. 2009]} \]

\[\text{[Mamajek 2009]} \]

\[\text{[L-B & P 1974]} \]
the evolution of disk structure: slow, then fast

formation → viscous evolution (particle growth?) → dissipation

accretion + diffusion → inside-out clearing (?)

sedimentation + growth

timeline

[L-B & P 1974]

0.100 Myr

radius [AU]

log \(\Sigma [g/cm^2] \)

[Sean Andrews
October 12, 2010 - SMA Advisory Committee Meeting]

dissipation

1/2-life \(\sim 3 \) Myr

dust < few AU

[Furlan et al. 2009]

[Mamajek 2009]

[Sean Andrews
October 12, 2010 - SMA Advisory Committee Meeting]
transition disks: rapid clearing of the inner disk

missing warm dust near the star

resolving the disk cavity:

• size of cleared region
• properties of remnant disk
• contents of inner disk
transition disks: rapid clearing of the inner disk

resolving the disk cavity:

- size of cleared region
- properties of remnant disk
- contents of inner disk

[Andrews et al., in prep.]
transition disks: rapid clearing of the inner disk

transition disks: rapid clearing of the inner disk

• ~1% (1 Myr); ~10% (3 Myr)
 [Strom+ 1989; Muzerolle+ 2010]

• >100x less emission in cavity
• cavity sizes: $R \sim 20-40$ AU
• massive outer disks (>0.01 M_\odot)
 [Pietu; Brown; Hughes; Isella; Andrews]

• lower accretion rates (~10%)
• some material in cavity (gaps?)
 [Espaillat+ 2007, 10]
transition disks: rapid clearing of the inner disk

• ~1% (1 Myr); ~10% (3 Myr)
 [Strom+ 1989; Muzerolle+ 2010]

• >100x less emission in cavity
• cavity sizes: $R \sim$ 20-40 AU
• massive outer disks ($> 0.01 M_\odot$)
 [Pietu; Brown; Hughes; Isella; Andrews]

• lower accretion rates (~10%)
• some material in cavity (gaps?)
 [Espaillat+ 2007, 10]
transition disks: rapid clearing of the inner disk

• ~1% (1 Myr); ~10% (3 Myr)
 [Strom+ 1989; Muzerolle+ 2010]

• >100x less emission in cavity

• cavity sizes: $R \sim 20-40$ AU

• massive outer disks (>0.01 M_\odot)
 [Pietu; Brown; Hughes; Isella; Andrews]

• lower accretion rates (~10%)

• some material in cavity (gaps?)
 [Espaillat+ 2007, 10]
transition disks: rapid clearing of the inner disk

- ~1% (1 Myr); ~10% (3 Myr)
 [Strom+ 1989; Muzerolle+ 2010]

- >100x less emission in cavity
- cavity sizes: $R \approx 20-40$ AU
- massive outer disks ($>0.01 \, M_{\odot}$)
 [Pietu; Brown; Hughes; Isella; Andrews]

- lower accretion rates (~10%)
- some material in cavity (gaps?)
 [Espaillat+ 2007, 10]
summary: disk structure, evolution, planet formation

SMA: dust sensitivity + angular resolution

“new” field of observational planet formation

1. disk densities
 - resolved radio emission $\rightarrow \Sigma$
 - Σ varies like $1/R$ near star, tapered $1/e^R$ at large R

2. viscous evolution
 - viscosity (α) \sim MRI
 - mass correlated with size

3. rapid “transitions”
 - large, resolved cleared regions
 - very young (1 Myr) exoplanets?

thanks to: D Wilner, M Hughes, C Qi, & C Dullemond