

SMA OPERATIONS

George Nystrom
Interim-Director
SMA Hawaii Operations

SMA OPERATIONS GENERAL COMMENTS

- We have transitioned from an Engineering to a Science driven operation.
- SMA operations are working well even with the sudden loss of senior staff (Schinckel, Peck)
- SAO/ASIAA interactions are much improved.
- We have 4 professional antenna operators presently and have selected a 5th operator and processing an employment offer.
- Hawaii relations are excellent. They have approved the new Phase Monitor and we resolved a road access problem to everyone's satisfaction.
- Our remote surveillance has been upgraded allowing unattended operations to extend into the morning and weekends.

OBSERVING MODEL

- Scheduling system determines the science track based on array configuration, project rating, weather, antennas status etc.
- Currently 6 nights Science observing and 1 engineering testing night per week.
- "Priming" –Tests the array to ensure that is is ready for observing.
- Priming checks: Observing frequency, Correlator mode, Pointing, Delays and Fringes.
- Priming is done from both the Summit and Hilo Office at HP. A technical staff member is available during Priming to ensure proper instrument operation.

Observing Model

- First shift (1700-0200):
 - Hawaii Staff
 - 1 Observer
 - Visiting Astronomer or second Observer
- Second Shift (0200-0900):
 - Remote
 - Two Observers
 - Operating from Cambridge or Taiwan
- Summit Technical Staff
 - Assumes control of the Array upon completion of Observing.

ARRAY RE-CONFIGURATIONS JULY'06-JULY'07

- Science drives Array re-configurations
- Most re-configurations require 3 to 4 antennas to be moved.
- Timing of moves is usually adjusted to correspond to poor weather.

Re-Configurations
JUL 06 Moved to Compact
SEP 06 Moved to Extended
OCT 06 Moved to Very Extended
DEC 06 Moved to Compact
JAN 07 Moved to Sub-Compact
FEB 07 Moved to Compact
APR 07 Moved to Sub-Compact
MAY 07 Moved to Very Extended
JUN 07 Moved to Compact
JUL 07 Moved to Extended

OBSERVING EFFICENCY

POTENTIAL CAUSES FOR LOST TIME

- Weather: Snow, Ice, Fog, High Winds, Unstable Phase etc.
- Instrumentation: Hardware, Servo systems, Receivers etc.
- Software: Correlator, pointing, observing script etc.
- Observer errors
- Array configuration changes: 2-3 days per re-configuration

OBSERVING EFFICENCY

Total nights available (2007A, Apr 23 - Aug 23): 123

•	Total lost time:	(weather)	19**
		(receivers)	3
		(correlator)	1
		(polarization)	2
•	Engineering nights:		25
	(Testing, & re-configurations)		

Observing nights for science: (123-24) 99

Total number of successful tracks: 75 (+5 filler)

Successful science efficiency: (75/99)
 (successful science on nights allocated for science)

• Overall operational efficiency (123-25/123): 80% (successful operation with no bad weather or equipment failure)

^{** 4=}fog, 4=high humidity, 11=bad phase SMA Advisory Committee

SMA ANTENNA ATTRIBUTES

ATTRIBUTE	ANTENNA 1	ANTENNA 2	ANTENNA 3	ANTENNA 4
RECEIVER SET	200,300&600	200,300&600	200,300&600	200,300,400&600
CO 2-1	69K	71K	66K	100K
Trec CO 3-2	85K	89K	67K	119K / 171K
CO 6-5	349K	290K	352K	386K
DISH FIGURE	12 μ	13 μ	16 µ	17 μ
BLIND POINTING OFFSETS (" RMS)				
OPTICAL(AZ,EL)	2.5,2.6	1.5,1.9	1.5,2.2	2.1,2.9
RADIO(AZ,EL)	3.3,2.8	3.6,2.4	3.1,2.2	2.7,3.8
SETTLING TIME WIND 20M/SEC AZ.=4 ⁰ /S, EL= 2 ⁰ /S	< 1 SECOND	< 1 SECOND	< 1 SECOND	< 1 SECOND
TRACKING ERROR	<0.5 arc-sec's	<0.5 arc-sec's	<0.5 arc-sec's	<0.5 arc-sec's
BEAM CO- ALIGNMENT	< 8 arc sec @ 690 GHz	< 4 arc sec @ 690 GHz	< 6 arc sec @ 690 GHz	< 4 arc sec @ 690 GHz
T CONTROL (C ⁰)				
CABIN	0.5 N, 2.2 D	0.5 N, 1.0 D	0.4 N, 0.7 D	0.4N, 0.8 D
IF/LO BOX	1.1 N, 3.0 D	0.7 N, 1.7 D	1.0 N, 2.4 D	0.7 N, 2.1 D
GUIDE CAMERA	OPTEL 2, FOCUS, PC104	OPTEL 1 PC104	OPTEL 2, FOCUS, PC104	OPTEL 1 PC104

SMA ANTENNA ATTRIBUTES

Δ	ATTRIBUTE	ANTENNA 5	ANTENNA 6	ANTENNA 7	ANTENNA 8
RE	CEIVER SET	200,300,400&600	200,300,400&600	200,300,400&600	200,300 & 600
	CO 2-1	67K	61K	79K	85K
Trec	CO 3-2	78K / 120K	69K / 117K	102K / 150K	134K
	CO 6-5	333K	396K	455K	NA
DISI	H ACCURACY	14 µ	17 µ	12 µ	11 μ
TRA	CKING ERROR	<0.5 arc-sec's	<0.5 arc-sec's	<0.5 arc-sec's	<0.5 arc-sec's
	ND POINTING FSETS (" RMS)				
OP.	TICAL(AZ,EL)	1.7,2.8	1.4,1.6	2.0,2.5	2.1,1.9
R/	ADIO(AZ,EL)	3.1,2.4	2.7,3.3	3.1,4.8	2.8,1.8
WI	TTLING TIME IND 20M/SEC =4º/S, EL= 2º/S	< 1 SECOND	< 1 SECOND	< 1 SECOND	< 1 SECOND
	BEAM CO-	< 3 arc sec	< 14 arc sec	< 14 arc sec	< 5 arc sec
A	LIGNMENT	@ 690 GHz	@ 690 GHz	@ 690 GHz	@ 690 GHz
ТС	CONTROL (C ⁰)		*IF/LO INSULATED	*A/C NOT OPER.	
	CABIN	0.5 N, 1.1 D	0.4 N, 1.2 D	3.5 N, 2.2 D	0.45 N, 1.7 D
	IF/LO BOX	1.0 N, 1.4 D	1.0 N, 1.1 D	4.5 N, 5.8 D	1.0 N, 2.6 D
GU	UIDE SCOPE	OPTEL 2, FOCUS, PC104	OPTEL 1 PC104	OPTEL 1	OPTEL 1

Sep 4-5, 2007

ANTENNA MAINTENANCE ISSUES

Preventative maintenance:

Instrument CCC's

Receiver Checks

Chill Water Systems

Elevation Lead Screws

Azimuth Motors

Dish & BUS inspections

PACU / Correlator

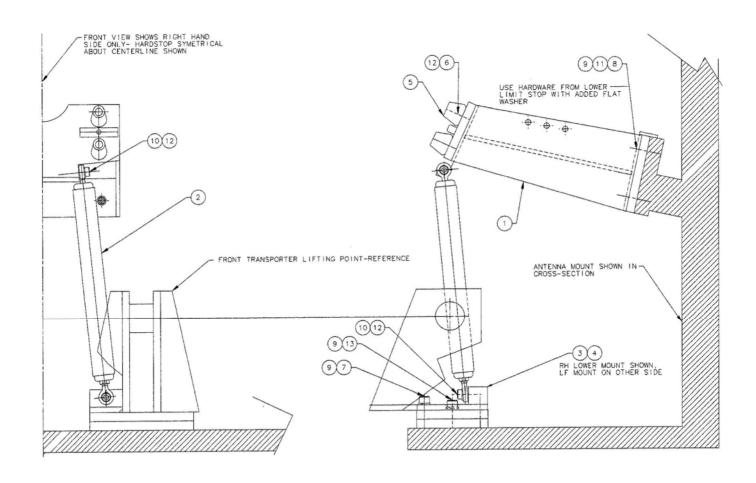
Pad Inspections

Fiber (Single and Multimode) Measurements

Transporter / Forklift

06-07 ANTENNA PROJECTS

- Antenna 7 & 8 Roof repairs
- Antenna 7 & 8 Air handler installation
- Antenna 6, 7 & 8 Azimuth encoder upgrade
- Antenna 1-8 Elevation Hard stops



ELEVATION HARD STOP

- A simple mechanical Elevation limit (Hard Stop) was developed to Allow 6 Antennas to operate within the Inner Ring on Pads 1-6.
- It has an Electrical switch that flags that the "Hard Stop" is in place and changes the Electrical Limits to Hard Limit values.
- It provides shock absorbers to limit the energy transfer to acceptable levels for both momentum and impact at the Hard limit.

HARDSTOP DESIGN

SUB COMPACT ARRAY

HARD STOP

ABSORBER

SUPPORT COLUMNS

SUB COMPACT ARRAY

07-08 Planned Antenna projects

- Antenna 5, Azimuth encoder upgrade. This completes encoder upgrades.
- Antenna's 1, 2 & 3 Cryostat replacements and instrument upgrades. (200,300,400 & 600).
- Antenna 8, 400 Receiver installation and alignment.
- Antenna 5, Fire system installation and test.
- Atmospheric Phase Monitor installation and testing.

ANTENNA PADS

- Antenna Pad repairs and sealing has been working extremely well. We see no evidence of chipping, cracking or other damage. We will begin re-coating pads this year.
- All Pads have power installed.
- All Pads have Fiber connections except Pad 24.
- Pads 13 and 17 there has been no progress on their re-location.

SUMMIT CONTROL BUILDING

- Emergency generator is operational and tested.
- PACU has gone thru several software and hardware changes to improve its temperature stability, monitoring and fire safety systems.
- The Control room Oxygen enrichment system has proven to be effective in aiding staff to work at the summit. However it has required a fairly high level of maintenance.
- A Second Floor Fire Escapement building addition will be install this coming year. It is presently out for bid with construction firms.

ANTENNA TRANSPORTER

- The Transporters hydraulics system was upgraded and tested. This included: Hot oil shuttle, Hydraulics lines (exposed to UV radiation) replacements, Wheel motor replacement (leaking brake seal) and a full routine maintenance was performed.
- Testing revealed: Propel system pumps are aging, second wheel motor brake seal leaking, Left rear lift cylinder bushing displaced.
- The above problems will be addressed this fall.

HILO OFFICE BUILDING

- The Hilo Office building has adequate office space for the SAO/ASIAA staff with sufficient Laboratory space.
- We are working with all the MK Observatories and MKSS to improve and move the current High Speed network to the Southern Cross (giga-bit) Network.
- We will upgrade SAO Ethernet equipment for the internal (LAN) and External (WAN) connections to support the change to the Southern Cross Network.
- We plan to install a Gas Fire Control and Suppression system to protect our Computer equipment room.

SMA HAWAII STAFFING

	SAO	ASIAA	VISITORS	
Admin:	2	2		
Director	1*	1	*INTERIM	
Sup. Astr	1	0		
Post Doc's	0	0		
Engineers	5	2		
Technicians	5	2		
Computer	1	1		
Operators	5	0		
Visitors		Dick Sramek (NRAO-Sr. Fellow-ALMA 3 Month sabbatical leave).		
	- 4			

Totals: 21 8

Positions open: Director of Operations, Astronomer