

Near Term SMA Upgrades

Robert W. Wilson

Double Bandwidth with One Receiver

(Better continuum sensitivity, more instantaneous spectral coverage)

- Minimal changes are required.
 - Remove 3.75-6.25 GHz filter in dewar.
 - Replace isolators at LNA input, replace a few commercial amplifiers (most will be ok).
 - Downconverter to convert 6-8 GHz to 4-6 Ghz needed.
 - LO can be derived from 200 Mhz reference in cabin.
 - Switches needed to feed either the high or low frequency receiver to the downconverter and feed its output to the other IF system.
- Engineering personnel are available.
- One or two chunks will be lost because of MRG leakage into the IF at 6-8 GHz.

Bandwidth Doubling Processor

Complete 400 GHz Receiver

Installations

(Better polarization measurements, new spectral band)

- Presently 4 are installed and working.
- We expect to have 6 by the end of the year, all by the middle of 2008.
- The present 400 Ghz receivers are not performing as well as expected. This is being investigated.
- We need the Todd Hunter replacement in the receiver lab to speed this along.

Improvements to 600 GHz Receivers

(Improved sensitivity is critical for calibration)

- Remove Martin-Puplett diplexer and use VDI multiplier with one tuner (Phase Shifter).
- Replace Teflon lens with a cooled quartz lens.
- Replace JPL "long junction" mixer with University of Cologne SIS mixer.
- Install quartz window.

Other Receiver Improvements

(Improved sensitivity)

- For comparison, the "top of dewar" receiver noise temperatures are: 200 GHz 50-60K, 300 GHz 60-80K, 400 GHz ~80-130K**
- Replace Teflon windows with coated quartz to reduce loss and improve bandwidth. (3K)
- Install wire grid polarizers to terminate feed horn cross polarization in a cold absorber (10K)
- Cool the Teflon lens to 45K (3K)
- Start using VDI tunerless multipliers on the 230 receivers
 - Less loss from LO coupler
 - No spares for Millitech multipliers and they cannot be repaired
 - Easier and more reliable tuning

Atmospheric Phase Monitor I

(More efficient observing)

- Four satellites available with 48°-53° elevation angles.
 - Echostar 5, Galaxy 27, Galaxy 13, Galaxy 10R
- Each transmits at ~12 Ghz with~20kW ERIP with two polarizations interleaved over 500 MHz bandwidth
- Expect to measure relative delays of 3.5 µm over time scales from 0.1 to 1000 seconds (good for 600 GHz).
- Use SMA pads and optical fibers for stability.
- 3 receivers for phase closure and 2-d u-v coverage.
- Remove phase change from calculated orbital motion.

Phase Monitor Antenna in an SMA Pad

Atmospheric Phase Monitor II

(More efficient observing)

- Use inexpensive satellite TV components
 - LNB Invacom QPH-031 provides horn, orthomode transducer, LNA and quadrature hybrid to allow four polarizations to be observed.
 Noise figure 0.4 dB, price \$79 ea. for 1-9.
- Data may be used to
 - Choose optimal observing frequency and project for current conditions (Phase stability and τ are only weakly correlated.)
 - Chose optimal time of observing calibrators
 - Determine Phase stability trends at the site
- Monitor will run 24/7 and produce uniform data for the Mauna Kea community in real time.

Scott Paine's water vapor measurement plans

 I'll have 2 or 3 slides from Scott here on Tuesday

(Increased sensitivity and spatial resolution)

- Max Baseline, Aeff.
 - SMA 508 m 161 m²
 - SMA+CSO 782 m 201 m²
 - $\ \ \, SMA+JCMT \ \ \, 624 \ m \ \ \, 238 \ m^2$
 - eSMA 782 m 278 m²
- RMS flux in one 8h track
 - SMA 0.551 mJy 1.00
 - SMA+CSO 0.519 mJy 0.94
 - SMA+JCMT 0.393 mJy 0.71
 - eSMA 0.375 mJy 0.68

Assumptions about eSMA Telescopes

Telescope	E _{app}	A _{app}	T _{Rx}	Bw (Hz)	#Sb	#Pol
SMA	0.71	28.3	80	2x10 ⁹	2	2
CSO	0.71	85.0	80	2x10 ⁹	2	1
JCMT	0.55	176.7	80	2x10 ⁹	2	2

eSMA Progress

- CSO and JCMT can be used very much like SMA antennas.
 - Optical fibers are in place and connected.
 - JCMT and CSO bought IF/LO equipment like the SMA's from us and have an SMA style VME Bus control computer.
 - JCMT and CSO can be commanded in position like another SMA telescope.
 - 10 station correlator code has been written and works.
 - We can now work with 2 different LO multiplications after the Gunns.
 - Polarization settings to match the SMA's are known for the JCMT and CSO.

eSMA Telescope Specific Problems

- JCMT
 - Can fit a baseline, but changes by ~1 cm between sessions. This might be an elevation or other internal effect. No successful multi-quasar baseline tracks have been observed yet.
 - Axes don't intersect (not orthogonal to baseline terms).
 - The cab moves wrt. the telescope, changing the path length.
 - Slews much slower than the SMA, increasing calibration overhead.
 - T_{Rx} at 345 GHz is currently 2X that of an SMA receiver.
 - Fringes have not been seen yet at 345 GHz.
- CSO
 - Baseline fits have a 120 deg. quasi-sinusoidal residual with ~1 hour period.
 The same oscillations are seen on the beacon.
 - Polarization can be tracked only by manually rotating the receiver.
 - Slews much slower than the SMA, increasing calibration overhead.
 - Fringes have not been seen yet at 345 GHz.

eSMA Operational Problems

- JCMT and CSO have generally had separate problems, so simultaneous testing is not fruitful.
- Different scheduling methods and priorities make testing hard.
- We have been running daytime tests, but only < 1 night in 2 months have been devoted to eSMA tests.
- There is no specification for how well the eSMA must work before science observations can be done.
- We have little progress from the last 2 years' efforts.

Sub-mm VLBI from Mauna Kea

- The science target is the SMBH in Sgr A* at 800 µm
 - 20 µas resolution can resolve and image the structure of emission at the event horizon scale
 - At longer wavelengths GC is optically thick and image is blurred by scattering.
 - Sgr A* is obscured by dust in the optical and near IR.

Ray tracing model Falcke et al. ApJ 528, L13 (2000)

Horizontal axis in these simulations is in units of the gravitational radius, about 5 μ as.

Sub-mm VLBI from Mauna Kea

- Our effort is centered on the SMA, using the eSMA antennas and connections.
 - Jonathan Weintroub leading our effort with many external and internal collaborators.
 - VLBI Program PI: Shep Doeleman, MIT-Haystack
 - IR&D funding for hardware based on wider CfA interest.
 - We can currently reference the eSMA to a high quality installed MASER
 - Co-phasing the SMA+CSO+JCMT will give 3.3x the effective area of the JCMT alone at 345 GHz.

Hardware for Phasing, Summing and Recording the eSMA for VLBI

- CASPER (Center for Astronomy Signal Processing and Electronics Research) at Berkeley supplies
 - FPGA boards
 - Design flow software
 - Astronomy macros
- MIT-Haystack Mark5b Digital Backend (CASPER based also)
- Use IF from existing "Correlator 1st downconverter" output
- Use a correlator in an FPGA based on a CASPER design for calibrating the system and dynamic atmospheric tracking.
- We either have or have on order enough hardware to process 1 GHz of bandwidth (4 Gbit/sec.).
- Many of the problems of the eSMA will be present here also, but should have a common solution and phases may be corrected by the correlator.

Sep 4-5, 2007

SMA Advisory Committee

Successful 1.3mm VLBI Observations

April 9 & 10, 2007 with JCMT, SMTO and 1 CARMA Antenna

Source	Flux (Jy)	SMTO-CARMA	SMTO-JCMT	CARMA-JCMT
1058+013	3.4 (3 Apr)			
1334-127	4.9 (31 Mar)			
3C273	12.2 (4 Apr)			
3C279	9.4 (4 Apr)			
Sgr A*	2.4 (10 Apr)			
1749+-96	6.4 (4 Apr)			
1921-293	4.0 (12 Apr)			
BL-Lac	2.9 (18 Apr)			

Quasar fluxes from Mark Gurwell, Sgr A* measured by CARMA during VLBI

Sep 4-5, 2007

SMA Advisory Committee