Becoming IRAC

Harvey Moseley Lab for Observational Cosmology NASA/GSFC

Spitzer Science Team: Mike Werner, Frank Low, George Rieke, Jim Houck, Giovanni Fazio, Mike Jura, Ned Wright, *Tom Roellig, Marcia Rieke, Tom Soifer, Bob Gehrz, Dale Cruikshank, Charles Lawrence*

A Tale of Woe?

- Reading over the history of IRAC, it seems that it was continually beset by trouble
 - Project went on for a long time.
 - Competitor (ISO) launched earlier.
 - Spent a year in attempting to shoehorn IRAC into Astro-F
 - In fact, it was this history which allowed IRAC to become the spectacular tool it is.

Source-Masked CDFS 4.5µm/3.5µm

AKMM Processing

GOODS Processing

• IRAC has been a major tool for cosmology

- Number counts, luminosity functions through time, spatial fluctuations
- Galactic astronomy
- These capabilities are far beyond what was envisioned when SIRTF (and IRAC) were originally conceived

IRAC Rev. 1

- IRAC was selected, along with the other instruments, in 1984.
 - IRAS was just launched Jan. '83
 - COBE was beginning development
 - KAO was flying
 - 32 x 32 detector arrays, with 1000 e read noise!
 - Integrating detectors showed promise, but not a lot had been demonstrated.
 - Photoconductors were revealing complex behavior under low light and radiation environments

Science Capability

- The IRAC science was broad:
 - Filter wheels, lots of filters
 - 3 bands, 1-5,5-15, 15-30
 - More defined by a set of capabilities than a focused science program
 - About the size of a large trash can.

Scientific and Technical Evolution

- SIRTF and IRAC evolved into systems very different from those envisioned in 1983.
 - Rapid improvement in detector performance
 - Changes in system architecture, driven by need to reduce system cost.
 - Warm Launch, aggressive radiative cooling
 - Focused science objectives

1980's

- Developing a design for IRAC
- Iterating in increasingly better detectors
 - Greater maturity in InSb, improved thinning, better material, multiplexers
 - IBC (BIB) detectors address the unpleasantness of photoconductors
 - Reduction in read noise, dark currents, better behavior.
- Don't forget WIRE (1990's)

Mapping Speed

Parameter	1986	2003	Speed
			Ratio
Format	58 x 62	256 x 256	18.2
QE	45%	90%	2
Dark Curr.	~3 e/s	~0.1 e/s	2
Read Noise	160 e/read	~10 e/read	16
Net Speed			1166
Gain			(73)
May 28, 2009 Giovanni Fest II			

IRAC Protoflight Unit

CRYOGENIC ASSEMBLY

The Moral of this Story is....

- "Relax and let Moore's law do the work."
- "Moore's law takes a lot of work."
 Ask Judy, Bill, and Craig about this
- Persistence and optimism carry the day!
- Note: JDEM will represent a step as large as the one made from the beginning of IRAC development to flight.

Science Beyond 100 µm

- History of star formation and energy release in the universe (neg. K-correction)
- Growth of structure in the universe
- Physics of Star Formation
- Formation of Planetary systems.
- CMB
 - Search for B-modes from earliest instant of BB
 - S-Z
 - Weak lensing of the CMB (small scale)

Basic Detectors Idea Still Works

Figure 1. Bolometric instrument of S. P. Langley.

•Except

We operate at lower temperatureWe need a large scale multiplexer

Bolometers

Motivation

History

The Old Days

• COBE

- 1 pixel
- Handmade

- KAO spe
- Circa 1987

• SHARC I

May 28, 2009

- Early 1990s
- KAO
- AXAF,
- Astro-E

Imaging Arrays Circa 1990

- U. of Chicago produced large arrays in early 1990s
 Up to 60 elements
- Two 32 element arrays for Hildebrand et al. polarimeter shown; Winston cones

Advances in Theory

- Treats nonequilibrium effects of noise
- Shows benefits of high temperature sensitivity
 NEP ~ 1/Sqrt[A]
- Focuses on fundamental limits

Mather, J. C. Appl. Opt. 23, 584 (1984)

May 28, 2009

Giovanni Fest

New Fabrication Techniques

- Precision fabrication
- Controlled electrical and thermal properties
 - Predictable response and noise -> Arrays!

Downey, P. M. Appl. Opt. 23, 910 (1984) Giovanni Fest

Visual Image

History

Submillimeter CSO Image

SQUIDs for Everyone

- Series array provides cryogenic amplification, couples to single SQUID front end
 - No transformers, exotic room temp electronics
- A low noise, practical, and easy to use cryogenic amplifier

Welty and Martinis IEEE Trans. Mag. 27,2924 (1991) Kautz et al. IEEE Trans. Mag. 23, 883 (1987)

Multiplexing - the path to large arrays

• Time division multiplexing simplifies interfaces

Chervenak et al. (1999)

Superconducting Transition-Edge Thermometer

Transition-Edge Thermometer (TES)

Submm astronomy: SCUBA-1

Survey of the galactic center

28

Detection of a gas giant around Fomalhaut

Submm astronomy: SCUBA-2

A collaboration of the UK, Canada, Raytheon, and NIST
SCUBA-2 will consist of 10,240 TES bolometer pixels (half at 450 μm, half at 850 μm) on the James Clerk Maxwell Telescope in the next months. James Clerk Maxwell Telescope

THz/submm astronomy: SCUBA-2

MUSTANG - a 3mm camera for the GBT

U. Penn, NRAO, GSFC, NIST, UBC

May 28, 2009

Goddard-Iram Superconducting 2-Millimeter Observer (GISMO)

May 28, 2009

ACT Works!

Preliminary Data

- Map of the Bullet cluster, showing the S-Z decrement at 145 GHz.
- The instrument was deployed with a 32 x 32 array of TES detectors

South Pole Telescope and APEX-SZ

APEX-SZ, 320 pixels

SPT, 960 pixels

Berkeley, Chicago, etc.

Future: TES CMB polarimeters for cosmology

- Signature of primordial gravitational waves
- CMB polarimetry microlensing: "cosmic shear"

 Probe of expansion history of universe with different systematics

WMAP EE mode (HEMTs)

Polarization-sensitive TES provide excellent sensivity – need good systematic control

Balloons: SPIDER, EBEX

May 28, 2009 Giovanni Fest 41 Ground-based: BICEP-2, SPUD, CIOVER, SPT, ACT, ...

CMB Polarization Detector Layout

Planar OMT Circuit

Hsieh, NASA/GSFC

Antenna-Coupled TES Bolometer Arrays

BICEP2 150 GHz Engineering Focal Plane

- 4 wafers
- 2 detectors per pixel
- 512 total detectors
- 16 x 32:1 TD SQUID mux

J. Bock, JPL/Caltech

Microwave Kinetic Inductance Detectors

- Measures changes in kinetic inductance of a superconductor due to pair breaking.
 - "moral equivalent" of STJ detector
 - Day et al. Nature 2003
- Uses phase or amplitude change in a resonator to sense photon input
- Is a novel twist on McDonald's (1989) thermal kinetic inductance detector
- Readout benefits strongly from microwave infrastructure

Summary

- Capabilities over the IR spectrum are growing exponentially
 - > 100 Mp in the NIR in the near term
 - -10^3 pixels now, 10^{4-5} in the next decade
- We are moving into an era that will allow unprecedented scientific progress
 - Leveraging tools that others spent a lot of money on
- With such promise, how do we set priorities?