

Brown Dwarfs with Spitzer - an IRS/IRAC Partnership

Thomas L. Roellig Spitzer Facility Scientist IRS Deputy- PI NASA - Ames Research Center

Fazio Symposium

May27, 2009 Boston, MA

Talk Outline

IRS and IRAC Instrument Synergy

• A recent example

IRS Dim Suns Team

- Jim Houck IRS PI
- Thomas Roellig Dim Suns Team Lead
- Mike Cushing
- Jeff Van Cleve
- Greg Sloan
- Sandy Leggett
- Amy Mainzer
- Mark Marley
- Didier Saumon
- Davy Kirkpatrick
- John Wilson

Low-Mass Stellar Objects

- Putting things in perspective
 - H burning down to 0.08 M_{sun}
 - D burning down to 0.013 $M_{sun}(13 M_J)$, takes 1e6 to 1e8 years
 - Dust condenses in stellar atmospheres at 1,300 < T < 2,000 K.
 - Silicate and iron grains.
 - Forms in objects from 0.03 to 0.08 Msun, in 1e8 to 1e9 years
 - Dust clouds fall below photosphere at T < 1,300 K
 - Dust clouds may become disrupted at L-T boundary
 - Dominant molecules vary with temperature
 - C in CH₄ for T < 1,300 K, is in CO at higher temperatures
 - N in NH₃ for T < 600 K, N₂ at higher temperatures
 - Cloud formation
 - H₂0 clouds form in stratosphere at T < 400 K
 - NH₃ clouds form in stratosphere at T < 200 K
 - Dominant opacity sources H_2 , H_2O , CH_4 , and NH_3
- Definitions
 - M dwarfs for T > 2,400 K
 - L dwarfs for 1,300 K > T > 2,400 K
 - T dwarfs for 600 K? > T > 1,300 K
 - Y dwarfs, planets for T < 600 K?

Dim Suns Evolution

Evolution of luminosity with time for different masses

IRS and IRAC

- The IRS and IRAC instruments complement each other for brown dwarf studies
- IRAC
 - Very high sensitivity
 - Short IR wavelengths well-matched to BD T_{eff}s
 - Multiple bands allow BD discovery by color
 - Can perform area surveys to find targets
- IRS
 - High sensitivity, especially in low-res
 - Spectral information can give better detailed information about:
 - chemical composition
 - temperature
 - age
 - atmospheric dynamics

Both instruments can be used for checking flux calibrations

IRAC Color Identification

IRAC B-D Color-Color Plot

(From Patten et al., 2008)

Ames Research Center What can the IRS Data Tell Us?

- Unlike the near-IR where the spectrum and opacity sources get very complicated, at wavelengths longer than 15 μm the opacity source is H₂O, which is well-behaved and allows us to determine T_{eff}. This allows the determination of gravity, radius, and mass of the BDs
- Can determine the presence of clouds in the atmosphere much better than in the near-IR.
- Can determine presence of molecular species never seen before, e.g. ammonia
- Can determine whether there is any non-equilibrium chemistry going on.
- May possibly show if there is a stratosphere (temperature inversion) by the enhancement of trace species, such as CO₂, HCN, C₂H₂, C₂H₄, C₂H₆, and CH₂O

Comparing IRS-IRAC Fluxes

IRS Spectra of BDs

Chemical Equilibrium

- Where elements reside depends on temperature and pressure. E.g.: $CO + 3H_2 < - > CH_4 + H_2O$
- If convection carries material to different levels and the reaction rates are not fast, then the chemical balance can get out of equilibrium
- Example: GI 570D
 - We find that NH3 is depleted by a factor of 10 at the photosphere
 - CO is enhanced by ~ 3 orders of magnitude
- This is indicative of a dynamic atmosphere, one likely to have bands or other cloud features like Jupiter, instead of a static layered atmosphere
- (For mere details, see Saumon et al., 2006)

Chem Equil. In GI570D

Recent Results

- Spitzer observations for 4 very cool (~600K) dwarfs (Leggett et al., 2009)
- Three are T9 dwarfs (latest currently known), one is T8
- Combined Spitzer IRS, IRAC data with ground-based NIR
- These combinations give:
 - Ratio of mid to NIR fluxes -> Teff
 - The 2.2 and 4.5 μ m fluxes -> metallicity, gravity (degenerate however)
 - 4.5 and 10 µm vertical atmospherric transport

Fazio Symposium Varying the Parameters in the Models

Models are from Marley and Saumon

Top panel: gravity and metallicity are degenerate

Bottom panel: Lower T_{eff} reddens the spectrum, the 4.5 to 10 μ m ratio very sensitive to K_{zz}

ULAS J0034-00

Red is model, black is measured data. There are known deficiencies in the line lists $0.9 < \lambda_{um} < 1.4$

Note that the IRAC 4.5 band shows that there has to be vertical transport with nonequilibrium chemistry. Need to take this into account when making Y-dwarf search parameter predictions

Perform a least-squares fit to the model parameters

Fazio Symposium ULAS J0034-00 The Two Best Fits

IRS Brown Dwarf "Firsts"

• First detection of the 7.8 μ m methane band

- First detection of ammonia in a BD atmosphere (at 11.3 μ m)
- First detection of non-equilibrium chemistry in a BD atmosphere

And Now What You've Really Been Waiting to See

My Only Photo Of Giovanni!

The First Press Conference

IOC

The IRS Ace of Spades

Pasadena Do-Dah Parade

Pasadena Do-Dah Parade

Jim Houck

No Title Needed

