45 Years of Infrared Astronomy at the Air Force Laboratory

Dr. Stephan Price Space Vehicles Directorate

First Near IR Surveys

ITT southern survey sensor

← ITT telescope

TMSS →

- Freeman Hall conducted the first IR survey (1962)
- TMSS (1965 1967) by Neugebauer and Leighton
- Southern sky (1966 1967) by Price

- Define the nature & detailed character of the infrared celestial background
- Probe-rocket based experiments (1970 1985)
 - 20 successes out of 23 attempts
- Satellites
 - Midcourse Space Experiment (1996 1997)
 - Observations with ISO and Spitzer
- 2MASS
 - Supported proof of concept study

First AFCRL Experiments

- Sensor (top left)
 - Double folded optics
 - 4" primary mirror
 - Linear array of 6
 Mid-IR detectors

- Two proof of concept flights in 1970
 - Piggy-backed on an atmospheric experiment
 - Detected Orion Nebula
 - Lessons learned
- ARPA & AFCRL also provided funds for
 - Four Cornell rocketbased experiments (1970 – 1976)
 - Caltech & U. of Ariz. for 5 and 10 µm groundbased surveys.

HISTAR & HIStar South

- First successful mid-IR survey
 - HISTAR from White Sands
 - April 1971 Dec 1972 (7 flights in 20 months)
 - HI Star South (Woomera)
 - **1974**
 - Southern sky survey
- Results
 - 4, 11, 21 and 27 μm point source catalog
 - First large scale maps of the diffuse IR emission from the galactic plane & the zodiacal background

Cygnus X – HISTAR vs MSX

- HISTAR had ac coupled electronics
 - Extended emission extracted by digitally inverting the high frequency attenuation
 - A comparison of the HI STAR Cygnus X map to a higher resolution MSX image is shown

Background Measurements Program

- 35 cm diam. telescopes
- SPICE (left)
 11-, 20- & 27 µm
- FIRSSE (above)
 20, 27, 50 & 90 μm
- X10 HISTAR sensitivity,

Launch of CB Experiment

- T-3 day rehearsal above
- Launch at left

Midcourse Space Experiment (MSX)

The IR Galactic Center

MSX (left) and Spitzer (right): IR 3 color images of the Galactic center

- Extend the absolute spectral fluxes of the calibration network stars into SWIR & visible to support system calibration at these wavelengths
- Upgrade entire calibration network
 - Create 0.4 30 µm spectral templates
 - Apply templates to all tertiary standards
 - Include additional spectral types
 - Add best characterized stars from the Bright Star Atlas to calibration network
- Thermo-physical lunar model

Application: Spitzer Space Telescope

Spitzer Infrared Array Camera calibration paper*: Systematic bias between K star calibrators and A star calibrators in the 3.6 and 4.5 μm bands – K stars rejected

Original CWW spectrum of α Tau: bias at wavelengths <5 μ m

New SWS+*MSX* K star spectra remove the bias allowing use of K star calibrators

The Moon for Calibration

 USGS products
 36 narrow spectral bands 0.35 μm < λ <
 2.39 μm

- Extended ~0.5° source
 - Only celestial object beside the Sun for radiance calibration
 - Radiance comparable to that from the Earth – within dynamic range of Earth looking sensors
- Irradiance calibration for low resolution and low sensitivity instruments
- Complicated model needed
 - Complex viewing geometry due to lunar orbit
 - Complex albedo distribution
 - Thermo-physical model