Experimental Structures of the Carbon Chains HC₇N, HC₉N, and HC₁₁N by Isotopic Substitution

M. C. McCarthy, E. S. Levine, A. J. Apponi, and P. Thaddeus

Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138; and Division of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138

Received February 8, 2000; in revised form April 28, 2000

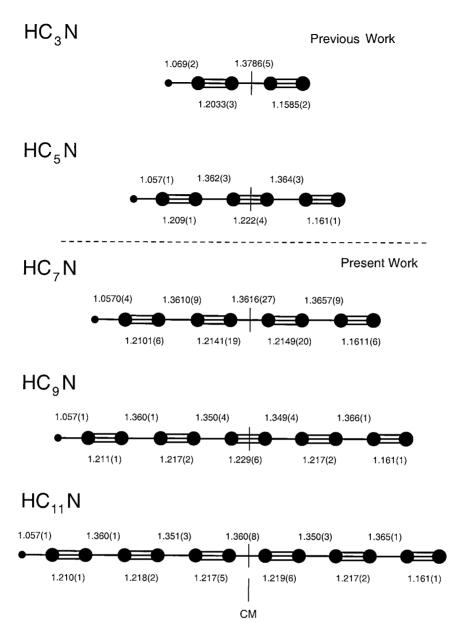
The effective structures (r_0) of the three linear cyanopolyynes HC_7N , HC_9N , and $HC_{11}N$ have been determined to high accuracy by isotopic substitution, following detection in a supersonic molecular beam with a Fourier transform microwave spectrometer of all of the singly substituted rare isotopic species. For each chain, the lengths of the individual bonds have been determined to an accuracy of 0.001 Å or 0.1% toward the end of the chain and to 0.01 Å or 1.0% toward the center. The experimental structures are in excellent agreement with recent high-level theoretical calculations, or, in the case of $HC_{11}N$, with extrapolation from HC_9N . The three polyynes studied here represent the largest reactive carbon chain molecules for which accurate structures have been derived empirically. For HC_7N and HC_9N , it has been possible to resolve at high-resolution nitrogen hyperfine structure in the lower rotational transitions and determine eQq for all of the singly substituted isotopic species of HC_7N and for normal HC_9N . © 2000 Academic Press

INTRODUCTION

Linear carbon chains as large as HC₁₇N have recently been detected in this laboratory in a supersonic molecular beam by Fourier transform microwave (FTM) spectroscopy (1). The refinements in instrumental sensitivity and production technique required to detect the longer chains now permit shorter ones to be observed with very high signal-to-noise, such that all the isotopic species with a single carbon-13 or nitrogen-15 are readily detected in natural abundance or with slight isotopic enrichment. Because rotational spectra can be rapidly acquired with our computer-controlled spectrometer, it is possible by isotopic substitution to determine precise effective (r_0) structures for fairly long chains within a homologous series to study how chemical bonding and electronic structure vary as a function of chain length. We do that here for the three cyanopolyynes HC₇N, HC₉N, and HC₁₁N. For the first two, ab initio values of the individual bond lengths have been calculated by Botschwina and co-workers (2, 3), allowing a direct comparison of experiment with theory. The structures of HC₂N (4) and HC₅N (5) were determined by isotopic substitution some time ago, so with the work here a detailed comparison of the bonding in five successive cyanopolyynes is now in hand (Fig. 1).

EXPERIMENTAL

A description of our FTM spectrometer and the discharge source used to produce the cyanopolyynes and other carbon chains is given elsewhere (6). Briefly, a pulsed supersonic molecular beam of an organic precursor vapor heavily diluted

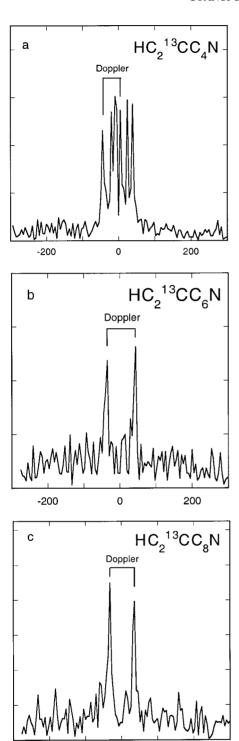

in an inert gas is produced by a commercial solenoid valve. Reactive molecules of many kinds are made by a small electrical discharge in the throat of the supersonic nozzle, prior to expansion of the gas into the large Fabry–Perot cavity of the spectrometer. The optimal production conditions for the present chains are similar to those for other closed-shell polyynes (7): a 1500-1800 V low-current gas discharge synchronized with a $200-\mu$ s-long gas pulse, with the best yields of HC_9N and $HC_{11}N$ at the higher discharge voltages. At a stagnation pressure behind the pulsed valve of the nozzle of about 3 atm, flows are 15-20 sccm at a pulse rate of 6 Hz.

The lines of the single ¹³C species of all three cyanopolyynes were readily observed without isotopic enrichment, using for a precursor gas a mixture of diacetylene and cyanoacetylene (0.5% each) heavily diluted in Ne, the blend which gives the strongest lines of the normal species. An increase in line intensity by a factor of 2 or more was easily achieved when a small amount (0.12%) of ¹³C-acetylene was added to the mixture; for speed and convenience, most of the ¹³C measurements were made with this enrichment. Lines of HC₇¹⁵N and HC₉¹⁵N, only marginally observed in natural abundance, were enhanced tenfold in intensity using a mixture of diacetylene (0.5%) and nitrogen (0.25%) enriched to over 99.9% in ¹⁵N, again diluted in Ne, a precursor combination found to produce strong lines of HC₁₁¹⁵N (8). For the three deuterated species, fully deuterated diacetylene was used in the diacetylene-cyanoacetylene mixture.

Good predictions for the rotational constants of the isotopic species studied here were made by scaling rotational constants calculated from the theoretical structures of HC_7N (2) and HC_9N (3), and from a structure of $HC_{11}N$ extrapolated from

76 MCCARTHY ET AL.

FIG. 1. Effective (r_0) structures of the cyanopolyynes (in Å) obtained by isotopic substitution. Uncertainties (1σ) are in the units of the last significant digit.


HC₉N (see footnote to Table 7), by the ratio of the observed to the predicted rotational constant for the normal isotopic species of each cyanopolyyne. For all the singly substituted ¹³C and ¹⁵N isotopic lines, measured line frequencies typically agree with those predicted to within a few hundred kilohertz, so an extensive frequency search was not required. Owing to the large zero-point energies of the bending vibrations of the hydrogen atom, frequencies for the *D* species were less well predicted by scaling the theoretical geometries, but they were still good to about 1 MHz, allowing rapid and unambiguous detection of most of the lines of this species as well.

Under favorable conditions, hyperfine-split lines of the ¹³C species of HC₇N were observed with a signal-to-noise of nearly 40 in 5 min of integration, while a longer time, about 15

min, was required to observe the same lines of HC₉N at comparable signal-to-noise (Fig. 2). For HC₁₁N, integration times of about 20 min were required to observe the lines of the 11 different ¹³C species with a signal-to-noise of five, which with isotopic enrichment was increased to 10–15. It is interesting to note that with enrichment the line intensities of the singly substituted ¹³C species are nearly equal for a given chain, indicating that in our discharge the carbon from the acetylene is randomly shuffled in the assembly of long chains.

SPECTROSCOPIC ANALYSIS

Enough rotational transitions of each isotopic species were measured to determine precisely the rotational constant *B* and

FIG. 2. Sample spectra of one of the ^{13}C isotopic species of each of the three cyanopolyynes. (a) The $7 \to 6$ transition of $\text{HC}_2^{13}\text{CC}_4\text{N}$ after 6 min of integration, showing nitrogen-quadrupole hyperfine structure and the characteristic double-peaked lineshape that results from the Doppler splitting due to the supersonic expansion of the molecular beam relative to the two traveling waves that compose the confocal mode of the Fabry–Perot. (b) The $20 \to 19$ transition of $\text{HC}_2^{13}\text{CC}_6\text{N}$ after 3 min of integration. (c) The $29 \to 28$ transition of $\text{HC}_2^{13}\text{CC}_8\text{N}$ after 10 min of integration.

 $v-v_0(kHz)$

Totationa	1 11diisitions	of Normal Heart
$J' \rightarrow J$	$F' \rightarrow F$	Frequency (MHz)
$6 \rightarrow 5$	$5 \rightarrow 4$	6767.978
	$6 \rightarrow 5$	6768.010
	$7 \rightarrow 6$	6768.026
$7 \rightarrow 6$	$6 \rightarrow 5$	7895.989
	$7 \rightarrow 6$	7896.010
	$8 \rightarrow 7$	7896.023
$8 \rightarrow 7$	$7 \rightarrow 6$	9023.994
	$8 \rightarrow 7$	9024.009
	$9 \rightarrow 8$	9024.020
$9 \rightarrow 8$	$8 \rightarrow 7$	10151.996
	$9 \rightarrow 8$	10152.007
	$10 \rightarrow 9$	10152.017
$10 \rightarrow 9$	$9 \rightarrow 8$	11279.996
	$10 \rightarrow 9$	11280.005
	$11 \rightarrow 10$	11280.014
$11 \rightarrow 10$	10→ 9	12407.994
	$11 \rightarrow 10$	12408.002
	$12 \rightarrow 11$	12408.010
$12 \rightarrow 11$	$11 \rightarrow 10$	13535.991
	$12 \rightarrow 11$	13535.999
	$13 \rightarrow 12$	13536.005
$13 \rightarrow 12$	$12 \rightarrow 11$	14663.987
	$13 \rightarrow 12$	14663.993
44 40	$14 \rightarrow 13$	14663.999
$14 \rightarrow 13$	$13 \rightarrow 12$	15791.982
	$14 \rightarrow 13$	15791.987
45 4.	$15 \rightarrow 14$	15791.992
$15 \rightarrow 14$	$14 \rightarrow 13$	16919.974
	$15 \rightarrow 14$	16919.980
	$16 \rightarrow 15$	16919.983

NOTE. — Estimated experimental uncertainties (1σ) are 2 kHz. Observed minus calculated frequencies are 0-2 kHz; the best fit constants are given in Table 6.

the centrifugal distortion constant D of the three cyanopolyynes by fitting to the data the standard expression for the rotational transitions of a linear molecule, $\nu_{J \rightarrow J-1} = 2BJ$ - $4DJ^3$, where J is the angular momentum quantum number for the upper rotational level, and hfs from the nitrogen nucleus has been neglected. For HC₇N and HC₉N, where nitrogen quadrupole hfs was resolved in the lower J transitions, a standard Hamiltonian which included hfs was used for the analysis. For the 36 isotopic species detected here, the rms of each fit is comparable to the measurement uncertainties of 1–3 kHz. Ten transitions were remeasured for normal HC₇N (Table 1), and 18 for normal HC₉N (Table 2). In all, seven transitions of nine rare isotopic species were measured for HC₇N (Table 3), 10 transitions of 11 species of HC₉N (Table 4), and 8 transitions of 13 species of HC₁₁N (Table 5). All of the measured lines lie between 6 and 17 GHz, the frequency band where the rotational transitions of the present molecules are most intense in our cold molecular beam ($T_{\rm rot} \sim 2.5$ K). The best-fit spectroscopic constants are given in Table 6.

For normal HC₇N and HC₉N, the rotational and centrifugal distortion constants agree to within the measurement uncer-

78 MCCARTHY ET AL.

 $TABLE \ 2 \\ Rotational \ Transitions \ of \ Normal \ HC_9N$

ivotationai	Tansidons	or morman megra
$J' \rightarrow J$	$F' \rightarrow F$	Frequency (MHz)
10 → 9	$9 \rightarrow 8$	5810.352
	$10 \rightarrow 9$	5810.362
	$11 \rightarrow 10$	5810.370
$11 \rightarrow 10$	$10 \rightarrow 9$	6391.390
	$11 \rightarrow 10$	6391.398
	$12 \rightarrow 11$	6391.404
$12 \rightarrow 11$	$11 \rightarrow 10$	6972.426
	$12 \rightarrow 11$	6972.434
	$13 \rightarrow 12$	6972.440
$13 \rightarrow 12$	$12 \rightarrow 11$	7553.462
	$13 \rightarrow 12$	7553.469
	$14 \rightarrow 13$	7553.474
$14 \rightarrow 13$	$13 \rightarrow 12$	8134.498
	$14 \rightarrow 13$	8134.503
	$15 \rightarrow 14$	8134.508
$15 \rightarrow 14$	$14 \rightarrow 13$	8715.533
	$15 \rightarrow 14$	8715.538
	$16 \rightarrow 15$	8715.542
$18 \rightarrow 17$		10458.638
$19 \rightarrow 18$		11039.673
$20 \rightarrow 19$		11620.706
$21 \rightarrow 20$		12201.738
$22 \rightarrow 21$		12782.770
$23 \rightarrow 22$		13363.800
$24 \rightarrow 23$		13944.831
$25 \rightarrow 24$		14525.862
$26 \rightarrow 25$		15106.891
$27 \rightarrow 26$		15687.921
$28 \rightarrow 27$		16268.950
$29 \rightarrow 28$		16849.980

Note. Estimated experimental uncertainties (1σ) are 2 kHz. Observed minus calculated frequencies and best fit constants as in Table 1.

tainties with previously published values: $B = 564.00074 \pm 0.00016$ MHz and $D = 3.821 \pm 0.087$ Hz for HC₇N by Kirby *et al.* (9), and $B = 290.518322 \pm 0.000057$ MHz and $D = 0.874 \pm 0.078$ Hz for HC₉N by Iida *et al.* (10). Owing to the strong lines here and the use of an axially oriented molecular beam yielding extremely sharp lines (a FWHM typically of 5 kHz), our constants for these two chains are more than three times as accurate as those previously published. As Table 6 shows, the quadrupole coupling constants for both are in good agreement with those found for HC₃N and HC₅N.

Line misidentifications will quickly poison structural determinations made by isotopic substitution, so considerable care was taken to avoid them. To assure that each of the many lines analyzed was part of a smooth harmonic progression and that none of the nearly 400 isotopic lines in Tables 3-5 was misassigned, many more lines in each rotational ladder were measured than strictly speaking are required to determine B and D. By deviating from the expected harmonic progression in each ladder, misidentified lines were quickly spotted and eliminated from the data set (very few were in fact encountered). Line intensities in a given ladder were shown to be close to those expected and were shown as well to increase as expected on isotopic enrichment. As required for closed-shell molecules such as the cyanopolyynes, the assigned lines exhibit no appreciable Zeeman effect when a large permanent magnet is brought near the molecular beam. As a final demonstration of consistency in support of the assignments, we note that the centrifugal distortion constants of the isotopic

TABLE 3

Rotational Transitions of the Singly Substituted Isotopic Species of HC₇N (in MHz)

$J' \rightarrow J$	$F' \rightarrow F$	DC7N	H¹³CC ₆ N	HC13CC5N	HC ₂ ¹³ CC ₄ N	HC ₃ 13CC ₃ N	HC ₄ ¹³CC ₂ N	HC₅¹³CCN	HC ₆ 13CN	HC ₇ 15N
7 → 6	6 → 5	7634.386	7722.989	7802.622	7863.681	7891.532	7892.225	7865.553	7805.524	
	$7 \rightarrow 6$	7634.407	7723.011	7802.644	7863.703	7891.554	7892.247	7865.574	7805.547	7731.542
	$8 \rightarrow 7$	7634.421	7723.023	7802.658	7863.716	7891.567	7892.260	7865.588	7805.559	
$8 \rightarrow 7$	$7 \rightarrow 6$	8725.020	8826.279	8917.290	8987.072	9018.900	9019.693	8989.209	8920.606	
	$8 \rightarrow 7$	8725.035	8826.295	8917.306	8987.088	9018.916	9019.708	8989.225	8920.622	8836.046
	$9 \rightarrow 8$	8725.046	8826.306	8917.316	8987.098	9018.928	9019.720	8989.236	8920.632	
$9 \rightarrow 8$	$8 \rightarrow 7$	9815.650	9929.568	10031.955	10110.458	10146.266	10147.158	10112.864	10035.686	
	$9 \rightarrow 8$	9815.662	9929.580	10031.967	10110.470	10146.278	10147.169	10112.875	10035.696	9940.549
	$10 \rightarrow 9$	9815.672	9929.588	10031.976	10110.479	10146.288	10147.179	10112.886	10035.706	
$10 \rightarrow 9$	$9 \rightarrow 8$	10906.280	11032.853	11146.623	11233.843	11273.629	11274.618	11236.517	11150.762	
	$10 \rightarrow 9$	10906.288	11032.863	11146.632	11233.853	11273.638	11274.629	11236.526	11150.771	11045.052
	$11 \rightarrow 10$	10906.296	11032.873	11146.638	11233.863	11273.648	11274.639	11236.534	11150.779	
$11 \rightarrow 10$	$10 \rightarrow 9$	11996.906	12136.137	12261.276	12357.224	12400.991	12402.084	12360.165	12265.835	
	$11 \rightarrow 10$	11996.914	12136.146	12261.286	12357.236	12401.000	12402.093	12360.175	12265.845	12149.553
	$12 \rightarrow 11$	11996.921	12136.153	12261.292	12357.242	12401.007	12402.100	12360.182	12265.852	
$12 \rightarrow 11$	$11 \rightarrow 10$	13087.532	13239.419	13375.936	13480.607	13528.350	13529.540	13483.816	13380.911	
	$12 \rightarrow 11$	13087.538	13239.427	13375.947	13480.615	13528.359	13529.548	13483.824	13380.917	13254.054
	$13 \rightarrow 12$	13087.545	13239.434	13375.952	13480.621	13528.366	13529.554	13483.830	13380.925	
$13 \rightarrow 12$	$12 \rightarrow 11$	14178.156	14342.703	14490.594	14603.988	14655.712	14656.998	14607.463	14495.983	
	$13 \rightarrow 12$	14178.161	14342.709	14490.601	14603.996	14655.718	14657.006	14607.470	14495.990	14358.553
	$14 \rightarrow 13$	14178.168	14342.714	14490.606	14604.000	14655.723	14657.010	14607.476	14495.995	

NOTE. — Estimated experimental uncertainties (1σ) are 2 kHz. Observed minus calculated frequencies and the best fit constants as in Table 1.

TABLE 4
Rotational Transitions of the Singly Substituted Isotopic Species of HC₉N (in MHz)

$J' \rightarrow J$	DC_9N	H13CC8N	HC13CC7N	HC ₂ 13CC ₆ N	HC ₃ 13CC ₅ N	HC ₄ 13CC ₄ N	HC ₅ ¹³ CC ₃ N	$HC_6^{13}CC_2N$	HC713CCN	HC ₈ 13CN	HC9 ¹⁵ N
$14 \rightarrow 13$	7921.710a	7981.644	8038.231	8086.654	8115.936	8132.518	8132.872	8117.147	8088.624	8040.777	7988.246
$15 \rightarrow 14$	8487.544a	8551.760	8612.386	8664.271	8695.648	8713.412	8713.793	8696.937	8666.379	8615.113	8558.833
$16 \rightarrow 15$	9053.381a	9121.878	9186.542	9241.888	9275.354	9294.300	9294.710	9276.735	9244.138	9189.456	9129.420
$17 \rightarrow 16$	9619.215ª	9691.992	9760.700	9819.505	9855.060	9875.195	9875.630	9856.528	9821.893	9763.792	9700.008
$18 \rightarrow 17$	10185.047	10262.106	10334.857	10397.121	10434.772	10456.084	10456.547	10436.323	10399.649	10338.130	10270.594
19 → 18	10750.884	10832.225	10909.013	10974.736	11014.478	11036.975	11037.461	11016.112	10977.402	10912.471	10841.180
$20 \rightarrow 19$	11316.715	11402.339	11483.167	11552.351	11594.184	11617.869	11618.379	11595.907	11555.158	11486.809	11411.766
$21 \rightarrow 20$	11882.548	11972.451	12057.321	12129.964	12173.889	12198.757	12199.292	12175.698	12132.912	12061.146	11982.352
$22 \rightarrow 21$	12448.381	12542.562	12631.478	12707.578	12753.594	12779.642	12780.208	12755.488	12710.669	12635.482	12552.937
$23 \rightarrow 22$	13014.214	13112.676	13205.630	13285.191	13333.300	13360.538	13361.123		13288.421	13209.816	13123.522

NOTE. - Estimated experimental uncertainties (1g) are 2 kHz. Observed minus calculated frequencies and the best fit constants as in Table 1.

species of a given chain, as required, are all very nearly the same (Table 6).

Although we can therefore be highly confident that there are no misassignments of lines to rotational ladders in Tables 3–5, it is important to be certain as well that the ladders are correctly assigned to the various isotopic species. As Fig. 1 shows, the center of mass (CM) of the cyanopolyynes falls very close to the central bond of the heavy atom backbone of the molecule. As a result, as Fig. 3 shows, all but one of the carbon-13 shifts occur in tightly spaced pairs, corresponding to the two carbon atoms at about the same distance from the CM. For the inner carbon pairs especially, the splitting in B is comparable to the uncertainty in the a priori isotope shifts in B. How then can one determine which rotational ladder corresponds to which carbon atom? Fortunately, this ambiguity is easily resolved, because for all reasonable a priori structures, even ones with cumulenic double bonds, the CM is displaced from the midpoint of the central carbon-carbon bond in the same direction: toward the terminal nitrogen atom. As a consequence, in each pair of rotational ladders in Table 6, the ladder with the higher B can be assigned without ambiguity to the carbon atom in the corresponding pair which is closest to the nitrogen end of the chain.

STRUCTURAL DETERMINATIONS

For each cyanopolyyne, effective (r_0) structures were determined from a least-squares fit of all the bonds in the molecule to the measured rotational constants in Table 6, i.e., those of all the rare isotopic species plus the normal. It was assumed that

each molecule is strictly linear. Toward the terminal atoms the bonds have been determined to remarkably high accuracy for molecules so large, of order 0.001 Å (Fig. 1). Equally remarkable, the derived bonds agree with those calculated *ab initio* to about the same accuracy (Table 7). Because the rotational constant of a linear chain is insensitive to isotopic substitution near the center of mass, the central bonds are not so accurately determined, but are still good to about 0.01 Å; these too are in very satisfactory agreement with theory, or in the case of HC₁₁N, with those predicted by extrapolation from HC₉N. Because substitution structures give even larger uncertainties for the central bond lengths, we have chosen not to report them here.

For the effective structures here, no correction was made for zero-point vibration. We have treated the rotation–vibration terms as a source of unknown error, which was estimated by assigning to each rotational constant an uncertainty which yields a reasonable value for χ^2 [a value of 2.3 was assigned, the most probable χ^2 for two degrees of freedom (11)]. The uncertainty in B was assumed to be the same for each isotopic species included in a given fit. The values so derived were $\Delta B = 0.0030$ MHz for HC₁N, 0.0055 MHz for HC₉N, and 0.0085 MHz for HC₁₁N.

It might seem strange that rotational constants which can be fit to 10^{-5} yield bonds which at best are good to 10^{-3} . The uncertainty in a given bond, however, is highly anticorrelated with that of each adjacent bond, and when this anticorrelation is taken into account in the propagation of errors by means of the covariance matrix of the fit, it is found that the best fit

 ${\bf TABLE~5} \\ {\bf Rotational~Transitions~of~the~Singly~Substituted~Isotopic~Species~of~HC}_{11}{\bf N}~(in~MHz) \\$

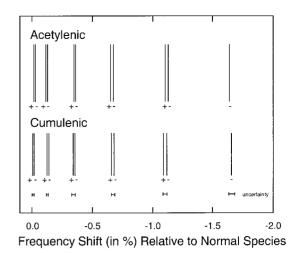
$J' \rightarrow J$	DC ₁₁ N	H13CC10N	HC¹³CC₀N	HC ₂ ¹³ CC ₈ N	HC ₃ ¹³ CC ₇ N	HC₄¹³CC6N	HC ₅ ¹³ CC ₅ N	HC ₆ ¹³CC₄N	HC713CC3N	HC ₈ ¹³ CC ₂ N	HC ₉ 13CCN	HC ₁₀ 13CN	HC ₁₁ 15N
26 → 25	8601.142	8646.992	8691.624	8732.187	8759.706	8780.268	8789.707	8789.998	8781.066		8734.098	8693.905	8652.538
$27 \rightarrow 26$	8931.958		9025.914	9068.038	9096.610	9117.969	9127.766	9128.076	9118.793	9098.034	9070.020	9028.284	8985.325
$28 \rightarrow 27$	9262.763	9312.146	9360.208	9403.893	9433.522	9455.668	9465.827	9466.152	9456.520	9434.997	9405.950		9318.110
$29 \rightarrow 28$	9593.576	9644.721	9694.502	9739.743	9770.432	9793.369	9803.896	9804.223	9794.255	9771.964	9741.872	9697.045	9650.900
$30 \rightarrow 29$	9924.387	9977.291	10028.791	10075.591	10107.341	10131.067	10141.954	10142.302	10131.986	10108.923	10077.798	10031.421	9983.685
$31 \rightarrow 30$	10255.200	10309.868	10363.082	10411.444	10444.254		10480.018	10480.376		10445.883	10413.724	10365.803	10316.475
$32 \rightarrow 31$	10586.010	10642.442	10697.376	10747.296	10781.160	10806.473	10818.082	10818.452	10807.448	10782.846	10749.649	10700.183	10649.265
$33 \rightarrow 32$	10916.820	10975.018	11031.666	11083.147	11118.071	11144.170	11156.148	11156.526	11145.180	11119.810	11085.571	11034.560	10982.051

NOTE. – Estimated experimental uncertainties (1 o) are 2 kHz. Observed minus calculated frequencies and the best fit constants as in Table 1.

^a Center of hyperfine-split transition,

80 MCCARTHY ET AL.

bonds with the uncertainties given here reproduce the rotational constants to the claimed 10⁻⁵ or better, a useful consistency check on the numerical analysis.


DISCUSSION

The present work provides the first empirical evidence that well-defined bond alternation, as predicted by theory, exists throughout a fairly long polyyne chain. There is no evidence in HC₁₁N, for example, of a tendency of the central bonds to even out, approaching those of a cumulenic, double-bonded structure, as observed for example in the shorter cumulenic chains H₂CCC (*12*) and H₂CCCC (*13*), and predicted for longer members of that series (*14*). Presumably, bond alternation persists in the limit of the infinite polyyne chain because it also

TABLE 6
Spectroscopic Constants of the Isotopic Species of HC₇N, HC₉N, and HC₁₁N in (MHz)

	3 , 11	` '	
Molecule	В	$D \times 10^{6}$	eqQ ^a
HC ₇ N	564.00112(5)	4.02(15)	-4.29(16)
HC₄¹³CC₂N	563.73236(7)	4.06(28)	-4.51(22)
HC ₂ 13CC ₂ N	563.68282(7)	4.07(28)	-4.53(22)
HC₅¹³CCN	561.82714(7)	4.03(27)	-4.46(22)
HC ₂ ¹³ CC ₄ N	561.69352(7)	4.18(28)	-4.50(22)
HC ₆ ¹³ CN	557.53939(7)	3.95(28)	-4.37(22)
HC¹³CC₅N	557.33224(7)	4.16(28)	-4.45(22)
$HC_7^{15}N$	552.25338(12)	3.96(48)	
H¹³CC ₆ N	551.64401(7)	4.06(28)	-4.41(22)
DC_7N	545.31523(7)	3.85(28)	-4.33(22)
HC ₉ N	290.51832(1)	0.860(10)	-4.84(21)
HC ₅ ¹³ CC ₃ N	290.46018(6)	0.924(81)	
$HC_4^{13}CC_4N$	290.44743(6)	0.961(81)	
HC ₄ ¹³ CC ₄ N HC ₆ ¹³ CC ₂ N	289.89853(8)	1.090(110)	
HC ₃ ¹³ CC ₅ N	289.85527(6)	0.869(80)	
HC ₇ ¹³ CCN	288.87979(6)	1.020(80)	
HC ₂ ¹³ CC ₆ N	288.80947(6)	0.901(81)	
HC ₈ ¹³ CN	287.17092(6)	0.919(81)	
$HC^{13}CC_7N$	287.08002(6)	1.040(80)	
HC ₉ 15 N	285.29480(6)	0.800(81)	
H ¹³ CC ₈ N	285.05909(6)	0.850(81)	
DC_9N	282.91852(6)	0.787(74)	
$HC_{11}N$	169.06295(3)b	0.242(14) ^b	
HC ₆ ¹³ CC ₄ N	169.03871(8)	0.201(44)	
$HC_5^{13}CC_5N$	169.03316(8)	0.302(44)	
$HC_7^{13}CC_3N$	168.86694(8)	0.277(45)	
HC ₄ ¹³ CC ₆ N	168.85165(8)	0.267(44)	
$HC_8^{13}CC_2N$	168.48249(10)	0.246(53)	
$HC_3^{13}CC_7N$	168.45616(8)	0.251(44)	
HC ₉ ¹³ CCN HC ₂ ¹³ CC ₈ N HC ₁₀ ¹³ CN	167.96371(8)	0.228(44)	
$HC_2^{13}CC_8N$	167.92703(8)	0.260(43)	
$HC_{10}^{13}CN$	167.19074(8)	0.194(45)	
HC13CC ₂ N	167.14684(8)	0.176(44)	
$HC_{11}^{15}N$	166.39526(7)	0.254(36)	
$H^{13}CC_{10}N$	166.28861(8)	0.209(39)	
DC ₁₁ N	165.40694(7)	0.265(36)	

Note. Uncertainties (in parentheses) are in the last significant digit.

FIG. 3. Carbon-13 isotopic shifts of HC₁₁N from two different *a priori* structures. The isotopic shifts occur in tightly spaced pairs for either acetylenic or cumulenic bonding since the center of mass is nearly midpoint between the central carbon–carbon bond, but is slightly displaced toward the terminal nitrogen atom. The plus (+) signs indicate ¹³C shifts toward the nitrogen side of the center of mass. Uncertainties are approximately proportional to the magnitude of the frequency shifts.

persists in the polyenes, which are the somewhat similar stable carbon chains with alternating single and double bonds whose structures have been studied extensively by X-ray diffraction (15).

With instrumental improvements, it may be possible to extend the present techniques to somewhat longer polyynes, say to HC₁₃N and HC₁₅N, but beyond that size reduced signal-to-noise and misidentification of lines are likely to make progress both tedious and error prone. Polyyne chains are highly unstable, even short ones like diacetylene tending to explosive polymerization, so X-ray diffraction, requiring dense samples, would not appear to be a viable method of structural determination.

It is interesting to note in Table 7 how well the empirical bonds here, derived by neglecting zero point vibration entirely, agree with the equilibrium bonds r_e calculated *ab initio*. Zeropoint vibration of the stretching modes will tend to increase the length of a linear chain and lower its rotational constant, while that of the bending modes in contrast will tend to decrease the length and raise the rotational constant. One wonders if at some chain length the cancellation is complete, and the r_e and the r_e structures are essentially identical.

Finally, we note that Table 6 provides all the data needed (the precise rest frequencies) for astronomical searches for the rare isotopic species of the present carbon chains, all three of which have been found in the normal isotopic species in at least one astronomical source. The best place to look is probably the cold, narrow-line molecular cloud TMC-1 in the Taurus dark clouds, where the width of rotational lines is typically 1 km s⁻¹ in equivalent radial velocity. The constants in Table 6 allow all the lower rotational transitions of the chains here, those of

 $^{^{}a}$ eQq = -4.319(1) MHz for HC₃N (Ref. 16) and eQq = -4.242(30) MHz for HC₅N (Ref. 17).

^b From Ref. (8).

TABLE 7
Experimental and Theoretical Bond Lengths for HC₇N, HC₉N, and HC₁₁N

Bond Lengths (Å)	HC	27N	HC	9N	HC ₁₁ N		
	Experiment ^a	Theoryb	Experiment ^a	Theory	Experiment ^a	Theoryd	
r(HC ₍₁₎)	1.0570(4)	1.0626(5)	1.057(1)	1.0627(5)	1.057(1)	1.0627	
$r(C_{(1)}C_{(2)})$	1.2101(6)	1.2100(5)	1.211(1)	1.2104(5)	1.210(1)	1.2104	
$r(C_{(2)}C_{(3)})$	1.3610(9)	1.3642(5)	1.360(1)	1.3637(5)	1.360(1)	1.3637	
$r(C_{(3)}C_{(4)})$	1.2141(19)	1.2167(5)	1.217(2)	1.2178(5)	1.218(2)	1.2178	
$r(C_{(4)}C_{(5)})$	1.3616(27)	1.3589(5)	1.350(4)	1.3564(5)	1.351(3)	1.3564	
$r(C_{(5)}C_{(6)})$	1.2149(20)	1.2147(5)	1.229(6)	1.2187(5)	1.217(5)	1.2187	
$r(C_{(6)}C_{(7)})$	1.3657(9)	1.3699(5)	1.349(4)	1.3571(5)	1.360(8)	1.3571	
$r(C_{(7)}C_{(8)})$	•••••		1.217(2)	1.2153(5)	1.219(6)	1.2153	
$r(C_{(8)}C_{(9)})$	*****		1.366(1)	1.3695(5)	1.350(3)	1.3695	
$r(C_{(9)}C_{(10)})$	*****		•••••	•••••	1.217(2)	1.2153	
$r(C_{(10)}C_{(11)})$	*****	•••••	•••••		1.365(1)	1.3695	
r(CN)	1.1611(6)	1.1618(5)	1.161(1)	1.1620(5)	1.161(1)	1.1620	

 $^{^{\}rm a}$ Derived from the rotational constants for the isotopic species in Table 6. Uncertainties (1\sigma) are in the last significant digit.

major astronomical interest, to be calculated to 0.02-0.2 km s⁻¹, a small fraction of a linewidth.

ACKNOWLEDGMENTS

We thank P. Botschwina, C. A. Gottlieb, H. W. Kroto, and J. K. G. Watson for helpful discussions and suggestions.

REFERENCES

- M. C. McCarthy, J. U. Grabow, M. J. Travers, W. Chen, C. A. Gottlieb, and P. Thaddeus, Astrophys. J. Lett. 494, L231 (1997).
- P. Botschwina, M. Horn, K. Markey, and R. Oswald, *Mol. Phys.* 92, 381 (1997)
- 3. P. Botschwina and M. Horn, J. Mol. Spectrosc. 185, 191 (1997).
- J. K. G. Watson, A. Roytburg, and W. Ulrich, J. Mol. Spectrosc. 196, 102 (1999).
- A. J. Alexander, H. W. Kroto, and D. R. M. Walton, J. Mol. Spectrosc. 62, 175 (1976).
- M. C. McCarthy, M. J. Travers, A. Kovács, C. A. Gottlieb, and P. Thaddeus, Astrophys. J. Suppl. Ser. 113, 105 (1997).

- W. Chen, M. C. McCarthy, S. E. Novick, and P. Thaddeus, J. Mol. Spectrosc. 196, 335 (1999).
- M. J. Travers, M. C. McCarthy, P. Kalmus, C. A. Gottlieb, and P. Thaddeus, Astrophys. J. Lett. 469, L65 (1996).
- C. Kirby, H. W. Kroto, and D. R. M. Walton, J. Mol. Spectrosc. 83, 261 (1980).
- M. Iida, Y. Ohshima, and Y. Endo, Astrophys. J. Lett. 371, L45
- W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, "Numerical Recipes in C," p. 655, Cambridge Univ. Press, Cambridge, UK, 1988.
- C. A. Gottlieb, T. C. Killian, P. Thaddeus, P. Botschwina, J. Flügge, and M. Oswald, J. Chem. Phys. 98, 4478 (1993).
- M. J. Travers, W. Chen, S. E. Novick, J. M. Vrtilek, C. A. Gottlieb, and P. Thaddeus, J. Mol. Spectrosc. 180, 75 (1996).
- S. A. Maluendes and A. D. McLean, Chem. Phys. Lett. 200, 511 (1992)
- 15. B. Hudson and B. Kohler, Annu. Rev. Phys. Chem. 25, 437 (1974).
- W. J. Lafferty and F. J. Lovas, J. Phys. Chem. Ref. Data 7, 441 (1978).
- G. Winnewisser, R. A. Creswell, and M. Winnewisser, Z. Naturforsch A: Phys. Sci. 33, 1169 (1978).

^b From Ref. (2).

c From Ref. (3).

^d Extrapolated from HC₂N by adding one C₂ link to theoretical structure of Botschwina and Horn (Ref. 3), assuming the same bond lengths as the C₂ link adjacent to the nitrile group.