Table of Contents

Section I. MMIRS Instrument Overview
 1. MMIRS Overview
 2. MMIRS Functional and Performance Specification

Section II. Optic Design and Analysis
 1. Optical Design Description
 2. Optical Specification
 3. Ghost Analysis
 4. Throughput Calculations
 5. Coatings
 6. Grism Design
 7. Fringing
 8. Stray Light Analysis

Section III. MOS Section Design
 1. MOS Specifications
 2. MOS Section Mechanical Design
 3. MOS Design Supporting Calculations

Section IV. Camera Section Design
 1. Camera Specifications
 2. Camera Section Mechanical Design
 3. Camera Design Supporting Calculations
 4. Cryostat Optics Mounting System
 5. Collimator and Camera Lens Mount Calculations

Section V. Guider/Wave Front Sensor
 1. Guider/WFS Design
 2. Description of CCD Electronics

Section VI. MMIRS Structural Analysis
 Structural Analysis Overview
 1. Optical Performance of the GWFS and Science Optics
 2. Buckling Analysis of the MOS and Camera Sections
 3. Lens 6 Analysis
 4. Lens 1 Analysis
 5. Radial Lens Mount Sizing for Nylon
 6. Thermal Gradient Stress on Lenses 3-14
 7. MMIRS Instrument Lift Cart Analysis

Section VII. MMIRS Thermal Analysis
 1. MMIRS Design Compliance Matrix - Thermal
 2. MOS Steady State Analysis
 3. MOS Transient Analysis
 4. MOS Thermal Finish Analysis Report
 5. Camera Steady State and Transient Analysis
 6. Camera Thermal Finish Analysis Report
 7. Camera-Detector Steady State and Transient Analysis
 8. Temperature and Stress Distribution in Optics
Section VIII. MMIRS Electrical Design
1. IR Array Electronics
2. Instrument Electronics
3. Instrument Electronics Rack Packaging
4. Electronics Rack Thermal Analysis

Section IX. MMIRS Software Design
1. Overview
2. Derived Requirements
3. Design Principles
4. Computer and Software Architecture

Software Components
5. Libraries
6. Servers
7. Graphical User Interfaces, GUI's
8. System Management
9. Testing and Verification
10. Data Products
11. Schedules and Milestones

Section X. Miscellaneous
1. Observatory Interface
 a. MMIRS Observatory Interface
 b. MMT Telescope Bearing Moment
 c. Magellan Telescope Bearing Moment
2. Vacuum System
3. Temperature Sensing
4. Gate Valve Interlock

Section XI. Operations and Maintenance
1. Observing Overview
2. Slit Mask Exchange Procedure
3. Warm Up and Cool Down Procedure
4. Maintenance and Serviceability
5. Shipping and Installation Plans
6. Assembly and Test Plan

Section XII. Management
1. MMIRS Project Schedule
2. MMIRS Integration & Test Flow Chart
3. Status of PDR Action Items
4. Known/Open Issues
Section I.

MMIRS Instrument Overview

1. MMIRS Overview
2. MMIRS Functional and Performance Specification
MMIRS OVERVIEW
Brian McLeod
May 3, 2005

MMIRS OVERVIEW ... 1
1 INTRODUCTION .. 2
2 SCIENTIFIC CAPABILITIES ... 2
 2.1 INTRODUCTION .. 2
 2.2 FORMATION OF STARS AND SUBSTELLAR OBJECTS ... 3
 2.3 THE PHYSICS OF SNE ... 5
 2.4 BLACK HOLE DEMOGRAPHICS ... 7
 2.5 CHEMICAL EVOLUTION IN DISTANT GALAXIES .. 7
 2.6 SCIENTIFIC REFERENCES ... 10
3 TECHNICAL DESCRIPTION ... 10
 3.1 INSTRUMENT OVERVIEW ... 10
 3.2 SCIENTIFIC GOALS AND MMIRS DESIGN .. 11
 3.3 ESTIMATED MMIRS SENSITIVITY ... 12
 3.4 OPTICAL DESIGN .. 13
 3.5 MECHANICAL DESIGN .. 14
 3.5.1 Dewar Design .. 14
 3.5.1.1 Cryogenics .. 14
 3.5.1.2 Wheels ... 14
 3.5.1.3 Optic Mounts ... 14
 3.5.1.4 Detector Mount ... 15
 3.5.2 MOS Dewar ... 15
 3.5.2.1 Gate Valve ... 15
 3.5.2.2 Rapid Thermal Cycling ... 15
 3.5.2.3 Slit Masks .. 15
 3.6 ELECTRONICS .. 16
 3.7 GUIDING AND WAVEFRONT SENSING ... 16
 3.8 SOFTWARE ... 16
1 INTRODUCTION

This document describes the design of MMIRS, the MMT and Magellan InfraRed Spectrograph, a JHK imager and multiobject spectrograph that will be used at the f/5 focus of the 6.5 meter MMT and Magellan Clay telescopes. MMIRS will allow imaging of a 7′ by 7′ field with 0.2″ sampling on a 2048 by 2048 pixel Hawaii 2 array, as well as multiobject spectroscopy with slitlets over a 4′ by 7′ field. A spectral resolution of ~3000 is achieved with coverage of the complete J, H or K bands. Currently, neither MMT nor Magellan users have regular access to either a wide-field, near-infrared imager or spectrograph. We plan to ship MMIRS to Magellan for one observing run per year, nominally three months long. At Magellan\(^1\), MMIRS will be operated in campaign mode with Megacam, SAO’s large CCD array. At the MMT, MMIRS would be scheduled as requested by observers.

The FLAMINGOS instrument, a near-infrared multiobject spectrograph developed by Richard Elston’s group at the University of Florida, has been brought to the MMT as a visitor instrument. The design of MMIRS builds upon FLAMINGOS and FLAMINGOS-2, currently under development for Gemini. We are developing MMIRS at the Smithsonian Astrophysical Observatory (SAO), but are collaborating with the University of Florida team to use existing FLAMINGOS mechanical and dewar designs. This collaboration will allow us to build MMIRS on an accelerated schedule for less money than would otherwise be possible. The University of Florida will receive telescope time at the MMT and Magellan (separate from the TSIP allocation) in return for this assistance.

The SAO instrument team has delivered six major instruments to the MMT: the f/5 wide-field refractive corrector, the Hectospec and Hectochelle fiber-fed bench spectrographs, the Hectospec/Hectochelle robotic fiber positioner, Megacam (a 36 CCD optical imager), and a dedicated f/5 wavefront sensor. MMIRS builds upon this program, and makes use of software, detector electronics, and stepper motor drive systems.

2 SCIENTIFIC CAPABILITIES

2.1 INTRODUCTION

MMIRS will enable forefront research in stellar and extragalactic astrophysics. We illustrate the scientific capabilities of MMIRS by describing a mix of programs that might be carried out by members of the Magellan and MMT Partner institutions or by investigators from the US community at large who will have access to this instrument as part of the TSIP program. We consider topical problems in star formation, the physics of supernovae, the growth of black holes, and the formation and evolution of galaxies.

\(^1\) The Magellan project has procured an f/5 secondary blank for Magellan 2, and this mirror will be polished at the Steward Observatory Mirror Lab. The mirror is currently being generated at Kodak.
MMIRS is a versatile instrument. Its wide field of view and its changeable multislit aperture plates allow for simultaneous spectroscopic observations of 30 to 70 objects. Its low-resolution modes allow maximum spectral coverage and high sensitivity to broad spectral features (e.g., molecular bands), while the highest resolution modes allow one to work effectively between the telluric OH emission lines to achieve maximum sensitivity. This versatility makes MMIRS a powerful tool in many other areas of astrophysics (e.g., planetary science, stellar populations, photospheric abundances) that we do not have space to discuss.

![Figure 1. FLAMINGOS J and H spectrum of MP J2045-6018 at R=600 obtained at Gemini South. MP J2045-6018 is an extremely luminous radio source identified with a very red AGN (K=18).](image)

2.2 FORMATION OF STARS AND SUBSTELLAR OBJECTS

Star formation is central to galaxy formation, interstellar medium physics, and planet formation. Despite substantial progress over the last two decades, fundamental puzzles remain. (1) What determines the stellar initial mass function (IMF)? (2) Does the IMF depend upon environment? (3) Are accretion disks as important in the formation of high and low mass stars as in the formation of solar-type stars? The importance of wide-field near-infrared multiple object spectroscopy at R = 300-3000 for studies of star and planet formation was stressed in “The First Workshop on the Ground-Based O/IR System” sponsored by NOAO in Oct. 2000.
Many specific theories can be tested with MMIRS. (1) Do high-mass stars preferentially form at the centers of clusters (e.g., Hillenbrand & Hartmann 1998; Testi et al. 1999), or do they simply sink to cluster centers as dynamical mass segregation proceeds (Kroupa 2002)? (2) Do brown dwarfs form in isolation, or are they formed in circumstellar disks around other stars and then dynamically ejected (Reipurth & Clarke 2001; Bate et al. 2002)? (3) Are planetary-mass objects also ejected from multiple stellar systems (Luhman et al. 2000; Zapatero-Osorio et al. 2000; Hillenbrand & Carpenter 2000; Lucas & Roche 2000)? (4) Do proto-stars accrete most of their mass in short bursts from circumstellar disks (Hartmann & Kenyon 1996)? Testing these and other theories of star formation and of the origin of the IMF require the study of stellar populations at very early ages, when proto-stellar accretion may still be occurring, dynamical evolution is least advanced, and brown dwarfs and possible free-floating planets are brightest.

Near-infrared, wide-field spectroscopy on large telescopes is required to address these questions. Observations must be made at infrared wavelengths to penetrate the dusty environments of young star-forming regions; spectroscopic capability is essential to identify spectral types and thus stellar masses, and to determine mass accretion rates through key spectral features. Multi-object capability is vital to obtaining large enough samples to make statistically significant tests of the IMF, and large telescopes are required to observe the lowest-mass systems. Near-infrared spectroscopy will be essential in interpreting the results of sensitive photometric studies from both ground- and space-based (e.g., SIRTF) telescopes.

In the most embedded clusters of OB stars, the He I and H I lines in the near-IR are the only way to classify the spectra of the higher-mass stars. The MMIRS resolution of 3000 is needed to identify these diagnostic absorption features. Emission line observations also can be used to estimate extinction corrections. Accurate spectral typing of > 0.1 solar mass young stars also requires the MMIRS resolving power, in the spectral region of 2.1-2.4 µm. Observations of the Brγ emission line at 2.17 µm, at similar resolutions, can be used to determine accretion rates in low-mass protostars down to low levels (Muzerolle et al. 1998). In addition, the (Paschen β (1.28 µm))/(Brγ) ratio can be used to estimate extinctions in these systems (Muzerolle et al. 2001). Fields at least 20’ in diameter need to be imaged to fully characterize populations of relatively nearby embedded clusters, a project of reasonable scale with the MMIRS imaging field of view.

Likewise, fields 30’ in diameter must be imaged to K=21 to advance surveys for Jupiter-mass free-floating brown dwarfs within nearby clusters. Such a survey would offer an order of magnitude improvement over current work (Burrows et al. 1997; Baraffe et al. 1998). With MMIRS at the MMT or Magellan, this task can be done in about 1.5 hr per field. Because of the broad molecular bands expected in spectra of young brown dwarfs at 1-10 Jupiter masses (1000-2000 °K), low-resolution spectroscopy is ideal for confirming the cool temperatures and sub-stellar nature of candidates identified in the imaging. About 20-100 brown dwarf candidates are available for spectroscopy in single MMIRS fields in the Trapezium and IC348 fields (Luhman et al. 2000, Luhman 1999).
2.3 THE PHYSICS OF SNe

The last years have witnessed enormous progress in our knowledge of the optical properties of supernovae (SNe) of all types. Comparatively little is known, however, about SNe spectra at near-infrared (NIR) wavelengths. MMIRS will access a virtually unexplored window on the physics of SNe. Below we list three areas in which NIR spectroscopy is critical to resolving outstanding problems in SNe structure and evolution.

Type Ic SNe: Significant effort has gone into determining the presence of He features in optical spectra of these supernovae to determine their progenitors. While the He optical lines are blended with other species, making them difficult to identify, the He I 1.083 µm and 2.058 µm lines are much more isolated and offer a substantial advantage for the detection of He in type Ic supernovae. He I 1.083 µm absorption from a type Ibc SNe is shown in Figure 3.

Type Ib SNe: IR spectra would provide an important constraint on the He abundances in the atmospheres of Type Ib supernovae and help to determine whether the progenitors of Type Ib supernovae are single or binary stars.

Figure 2. Young stars and brown dwarfs in the Orion Nebula Cluster. The main panel shows 2000 IR stars detected by Ali & Depoy (1995) and McCaughrean and Stauffer (1994). Many of these stars are invisible at optical wavelengths. The box to the lower left is 6′ square, comparable in size to the MMIRS imaging field. The panel to the right is an HST NICMOS image (Luhman et al. 2000); approximately 50 candidate brown dwarfs (with masses 10 to 80 Jupiter masses) lie in this region. Multiobject spectroscopy with MMIRS could be used to derive initial mass functions and to determine the cluster structure in this and other regions.
Type Ia SNe: The identification of the progenitors of Type Ia supernovae is a longstanding and important problem. Identification of contaminating hydrogen and helium stripped from the companion star (Marietta et al. 2000) would help discriminate between the many Type Ia progenitor scenarios. Unfortunately the spectral region near Hα is contaminated with numerous Fe and Co lines. Telluric water vapor absorption makes searches for Paα (1.87 µm) from the ground problematic. Paβ (1.28 µm), on the other hand, can be detected from the ground, as can the He lines at 1.083 µm and 2.05 µm. Late-time (~1 yr) optical/IR spectra can be used in combination with atmosphere models to determine the mass of Fe produced in the explosion, which provides a

![SN 1999ex](image)

Figure 3. NIR evolution of the spectrum of SN 1999ex (days relative to maximum light are indicated next to each spectrum). The two most prominent features are due to He I. These absorption features allow us to estimate the He abundance in Type Ib/c events. Observations like this will help us to discriminate between binary or single progenitors for these core collapse supernovae. (Data from ISAAC on the VLT.)

fundamental test of the explosion models for Type Ia supernovae, and allows a direct determination of the mass of Ni produced (Spyromilio et al. 1992). Combined optical and
IR spectroscopic observations during the first weeks after explosion can also be used to test various explosion models, as shown by Hoeflich et al. (2002). MMIRS thus offers a clear avenue from which to address the critical question of the type Ia progenitors. In a 1 hr exposure, MMIRS will reach a signal-to-noise ratio of 5 for R=700 at K=19.5, sufficient to observe the broad spectral features characteristic of SNe. High quality spectra of type Ia SNe at or before maximum light can be obtained to z=0.10 in a three hr exposure. Good quality spectra 30 days past maximum can be obtained in hour-long exposures to z~0.07 for Ia SNe and to z~0.03 for type II SNe. Approximately 12 such objects are discovered each year. In longer exposures, spectra up to one year past maximum can be obtained for Ia's to the distance of Virgo. Such objects are rare (~2 per year) but they provide an important laboratory for studying the interactions between SNe ejecta and the surrounding ISM.

2.4 BLACK HOLE DEMOGRAPHICS

Recent work has shown that the masses (M) of black holes at the centers of galaxies are strongly correlated with the velocity dispersions (σ) in their host galaxy spheroids (Ferrarese & Merritt 2000; Gebhardt et al. 2000). This M - σ relationship implies some co-evolution between galaxies and black holes, yet its origin remains a mystery. Substantial progress can be made with a determination of the redshift evolution of supermassive black holes in large numbers of QSOs, where M is increasing rapidly, via measurement of σ for QSOs. While the bright, blue QSO continuum completely swamps the host galaxy stellar absorption features in the visible, the QSO continuum is at a minimum in the rest-frame H-band (e.g., Elvis et al. 1994). Recent observations in that wavelength regime have indicated that the galaxy spectrum can be well enough detected to allow an accurate σ to be measured (Martini et al., in prep). NIR measurements of σ for large numbers of QSOs using the long slit mode of MMIRS can therefore track the evolution of accretion history and supermassive black hole growth and help to unravel the origin of the co-evolution between black holes and galaxies.

2.5 CHEMICAL EVOLUTION IN DISTANT GALAXIES

Several lines of evidence point to the z = 1 to 3 era as the major epoch of galaxy formation (e.g., Lilly et al. 1995, Madau et al. 1996, Fall et al. 1996). The evolution of galaxies through star formation should be accompanied by a rapid evolution in the abundance of both stellar and interstellar matter. Optical surveys are very effective at identifying populations of star forming galaxies at intermediate and high redshift. These studies are keyed to strong, and usually saturated, resonance lines and so they do not provide strong constraints on chemical composition. The emission lines used in the traditional nebular abundance determinations are redshifted to the NIR at high redshifts (Pettini et al. 2002, see Figure 4). Fortunately, most of the strong nebular emission lines (e.g., Hα, [NII], [OIII], Hβ, [OII]) fall within transparent atmospheric windows in a number of interesting redshift ranges (see Figure 4). At z = 2.5, Hα, [OIII]λ5007 and Hβ, and [OII]λ3727 fall in the K, H, and J bands, respectively. The line strengths for galaxies with modest star formation rates can be readily detected with the MMT and Magellan telescopes. While the temperature sensitive lines (e.g., [OIII]λ4363) that are typically used in nebular abundance work are not likely to be detected at z = 2.5, there are well
documented techniques (e.g., Kewley & Dopita 2002) for determining gas-phase abundances using just the \([\text{OIII}], [\text{OII}], \) and Balmer emission-lines.

In addition to providing sensitive diagnostics of elemental abundances, the Balmer lines provide a good measure of the instantaneous star formation rate (e.g., Kennicutt 1998). MMIRS will reach line-flux limits of \(\sim 10^{-17}\) erg cm\(^{-2}\) (or \(10^{-20}\) W m\(^{-2}\)) in exposure times of a few hr. At \(z=2.5\) (where H\(\alpha\) is in the K-window) this translates to a star formation rate of \(\sim 3\) solar masses yr\(^{-1}\), barely one order of magnitude larger than the current Milky Way star formation rate.

Photometric techniques (e.g., photometric redshifts, Lyman-break, Balmer-break) allow for efficient selection of galaxy samples in redshift bins of width \(\sim 0.15\) in \(z\). The favorable redshift ranges for emission-line spectroscopy in the NIR, \(0.7 < z < 0.9\) (H\(\alpha\) in J-band), \(1.1 < z < 1.4\) (H\(\alpha\) in H-band, [OIII] in J-band), and \(2.0 < z < 2.7\) (H\(\alpha\) in K-band, [OIII] in H-band, [OII] in J-band), allow abundance determinations over a critical range of redshifts. At K = 20 the surface density of galaxies in the \(0.8 < z < 1.7\) range is roughly 2 per square arcminute. Using the JH grism one could sample 50 to 80 objects per slit mask in a redshift range that samples H\(\alpha\). MMIRS will allow a determination of the H\(\alpha\) luminosity function (LF), and hence star formation rate, with far greater confidence. Previous determinations of the H\(\alpha\) LF (e.g., Yan et al.) were based on samples of 35 objects. A modest MMIRS program could sample several hundred H\(\alpha\) emitters in the critical \(1 < z < 2\) range. MMIRS will allow us to sample the LF down to levelscorresponding to star formation rates below 1 solar mass yr\(^{-1}\).

The K band offers a window on star forming galaxies in the range between IR selected \(z\sim 1\) samples and the traditional Ly-break samples. For galaxies in this redshift range both H\(\alpha\) and Ly\(\alpha\) can be detected from the ground. While the sky density of objects bright enough for continuum detections at K is low at these redshifts, emission-line spectroscopy will go much deeper. We expect to be able to observe \(\sim 10-20\) objects per slit mask, making MMIRS considerably more powerful than single-object IR spectrographs on larger telescopes. Object selection will be based on multi-band imaging, particularly J and K photometry obtained with MMIRS in the imaging mode.

In Figure 5 we show the H\(\alpha\) LF in the \(0.8 < z < 1.8\) range as derived from NICMOS spectroscopy (Yan et al. 1999). Using MMIRS we will be able to extend this LF to lower luminosities (by a factor of 3-5) and to \(z = 2.5\). MMIRS observations will allow a determination of the evolution in the global star formation rate based on a single diagnostic, avoiding the differential extinction problems that plague other studies.
Figure 4. K-band spectra of two Ly-break galaxies from Pettini et al. (2001). Strong [OIII] and Hβ lines are clearly seen in both objects. Photometric techniques now allow one to select star-forming galaxies at redshifts that place Hα in the K-band and [OIII], Hβ in the H-band and [OII] in the J-band, thus allowing nebular abundance determinations over a range of redshifts.

Figure 5. Hα luminosity function in the 0.8 < z < 1.8 range as derived from NICMOS spectroscopy (Yan et al. 1999). This luminosity function is based on a sample of 35 objects; MMIRS would easily allow expansion of this work to samples an order of magnitude larger, including galaxies with star formation rates below 1 solar mass yr⁻¹.
2.6 SCIENTIFIC REFERENCES

Hartmann, L. & Kenyon, S. J. 1996, ARAA, 34, 207
Kennicutt, R. 1998, ARAA, 36, 189
Madau, P., Ferguson, H., Dickinson, M., Giavalisco, M., Steidel C., & Fruchter, A. 1996,
MNRAS, 283, 1388
Yan, L., McCarthy P., Freudling, W., Teplitz, H., Malumuth, E., Weymann, R., and Malkan, M.
Zapatero Osorio, M. R. et al. 2000, Science, 290, 103

3 TECHNICAL DESCRIPTION

3.1 INSTRUMENT OVERVIEW

MMIRS is a JHK imager and multislit spectrograph based on a 2048 by 2048 pixel Hawaii-2 detector that will be used at the f/5 Cassegrain foci of the MMT and Magellan-2 telescopes. MMIRS incorporates a two element CaF$_2$ coma corrector that replaces the large fused silica coma corrector used at optical wavelengths. If a coma corrector is not used, the images are unacceptably soft at the MMIRS slit plane. The fused silica used in the optical coma corrector has an OH content of \sim1000 ppm, and would offer low throughput in the K-band.
MMIRS will be constructed in two sections. The first section will contain the coma corrector lenses, the slit mask and aperture selection wheels, the guider assembly, and a gate valve which can be closed to separate the first section from the second. The lead coma corrector lens will serve as the dewar window. The slit mask, aperture selection wheels, guider pickoff mirror, and baffles will be cooled to LN$_2$ temperature by an independent dewar, but the rest of the first section will be operated at ambient temperature. To exchange slit masks, the gate valve between the two sections will be closed and the slit mask and aperture selection wheels will be warmed up. The exchange cycle can be accomplished during the daytime to prepare for nighttime observing. The second section of MMIRS contains the collimator optics, the grism and filter wheels, the camera optics, and the Hawaii-2 array. These will all be operated at LN$_2$ temperature to minimize the thermal background.

The Hawaii-2 detector will be operated with a modified version of the array controller we have developed for Megacam’s 36 CCD arrays. An engineering grade Hawaii-2 has already been deployed at the MMT in SWIRC, a J- and H-band direct imager.

3.2 SCIENTIFIC GOALS AND MMIRS DESIGN

Perhaps the strongest scientific imperative for MMIRS is timeliness: apart from J-and H-band imaging with SWIRC, there is currently no wide-field near-infrared (NIR) imager or spectrograph at the MMT or Magellan. This lack of NIR capability results in a serious lack of scientific opportunity at two large observatories. This situation drives a good deal of our thinking about the MMIRS design: in order to complete MMIRS as quickly as possible we wish to minimize risk and unnecessary development wherever possible.

The broader requirements, that we amplify below, are minimizing scattered light and thermal background to allow sensitive spectroscopy, achieving as high throughput as possible, and offering the option of high spectral resolution to resolve out sky lines. There is a range of opinion in the IR community as to the minimum resolution required to work between the sky lines, but almost all agree that R~3000 is sufficient. There is a fortunate convergence here that R~3000 is the maximum resolution possible while still covering an entire J, H or K-band with a multislit spectrograph and a 2048 pixel array. A 2048 pixel array offers 1024 two-pixel resolution elements; at R=3000 at 2.2 µm, each resolution element corresponds to ~7 Å. The total spectral coverage is therefore ~0.7 µm, allowing slits to be displaced 1’ in the spectral direction and still cover the full 0.5 µm wide K-band. Yet another fortunate convergence is that R~3000 is near the maximum resolution that can be attained with high efficiency from conventional grisms.

The pixel sampling that we have chosen, 0.2” per pixel, is a tradeoff between field of view and sampling. At both the MMT and Magellan, 0.4” FWHM images have been routinely obtained in the H and K bands, suggesting that choosing sampling cruder than 0.2” per pixel would be a mistake. Many of the imaging and spectroscopic observations anticipated with MMIRS could use as large a field of view as possible, suggesting that we operate near critical sampling.
MMIRS offers a large gain in spectroscopic performance as compared with FLAMINGOS 1. With its short focal length camera, FLAMINGOS 1 can achieve a maximum (two pixel) resolution of \(R \approx 1500 \) with efficient conventional grisms, compromising its ability to work between the sky lines. MMIRS’s large collimated beam also eases the optical design of the camera by reducing the required acceptance angles, resulting in better overall image quality.

<table>
<thead>
<tr>
<th>Table 1: Comparison of MMIRS to FLAMINGOS 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescope focal ratio</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>f/5.3 for f/9 at MMT</td>
</tr>
<tr>
<td>Collimated beam diameter</td>
</tr>
<tr>
<td>Collimator focal length</td>
</tr>
<tr>
<td>Camera focal length</td>
</tr>
<tr>
<td>Pixel scale</td>
</tr>
</tbody>
</table>

3.3 ESTIMATED MMIRS SENSITIVITY

We have used the observed count rates with FLAMINGOS 1 at the MMT to estimate the sensitivity of MMIRS for unresolved sources with either the MMT or Magellan telescopes.

<table>
<thead>
<tr>
<th>Table 2: S/N per resolution element at (R=3000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure Time (hrs)</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

The J, H, and K columns use the background levels averaged across the band. The \(J_{dark} \) and \(H_{dark} \) columns assume a background 20 times lower than the average level, appropriate for the regions between the OH airglow lines. At \(R=3000 \) approximately
40% of the spectrum will meet the low background condition (Martini & Depoy, 2000, SPIE, 4008, 695).

3.4 OPTICAL DESIGN

The MMIRS optics consist of 14 singlets: a two element coma corrector, a six element collimator with one aspheric surface, and a six element camera (Figure 6). The optics were designed by H. Epps with contributions by D. Fabricant. The design includes eight lenses, one BaF$_2$ lens, two S-FTM16 lenses (an IR-transmitting Ohara glass), one ZnSe lens, and one IR-grade fused quartz lens. All of the optical materials are readily available in the necessary diameters and thicknesses and we have verified material availability with suppliers. The largest elements in the MMIRS coma corrector, collimator, and camera have clear apertures of 202mm, 134mm and 149mm respectively.

The impossibility of coupling lenses to form multiplets at cryogenic temperatures is a severe optical design constraint. However, ambitious wide-field optical spectrographs have a comparable optical complexity. For example, the IMACS instrument has 12 lens groups counting the ADC/coma corrector, the collimator and the wide-field camera. For either optical or IR spectrographs effective antireflection coatings are essential for high performance. All of the optical materials used in MMIRS transmit well in the J, H, K bands, and as a result, the MMIRS optical throughput is dominated largely by surface reflection losses.

The coma corrector provides excellent images (0.1” RMS diameter) on a flat focal surface, allowing high transmission through narrow slits when the seeing is at its best. At the detector, the image quality is also superb with RMS image diameters of ~ one pixel (0.2” and 90% encircled energy image diameters of ~ two pixels (0.4”).

We have designed a suite of 5 grisms: 2 low resolution grisms covering the JH and HK bands, and 3 higher resolution grisms covering the individual J, H and K bands each at a resolution of approximately 3000 with a 2 pixel (0.4”) slit. The spectrum covers 1400 of the 2048 pixels which allows a 2’ wide field for multiobject spectroscopy with full wavelength coverage. A 4’ field will be covered with slightly reduced wavelength coverage. Approximate grism parameters are shown in the table below. Theoretical grating efficiencies were determined using PCGrate software.

<table>
<thead>
<tr>
<th>Grism</th>
<th>Wavelength Range</th>
<th>Grooves/mm</th>
<th>Prism Angle</th>
<th>Facet Angle</th>
<th>Resolution (2 pixel slit)</th>
<th>Theoretical Efficiency across band</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>1.11-1.39</td>
<td>230</td>
<td>41°</td>
<td>32°</td>
<td>3000</td>
<td>64-70%</td>
</tr>
<tr>
<td>H</td>
<td>1.45-1.82</td>
<td>175</td>
<td>41°</td>
<td>32°</td>
<td>3000</td>
<td>64-70%</td>
</tr>
<tr>
<td>K</td>
<td>1.95-2.45</td>
<td>130</td>
<td>41°</td>
<td>32°</td>
<td>3000</td>
<td>64-70%</td>
</tr>
<tr>
<td>JH</td>
<td>0.95-1.82</td>
<td>94</td>
<td>18°</td>
<td>14°</td>
<td>1300</td>
<td>55-80%</td>
</tr>
<tr>
<td>HK</td>
<td>1.45-2.45</td>
<td>80</td>
<td>21°</td>
<td>17°</td>
<td>1300</td>
<td>55-80%</td>
</tr>
</tbody>
</table>
3.5 MECHANICAL DESIGN

The MMIRS mechanical design makes heavy use of the successful heritage of the FLAMINGOS design. MMIRS will incorporate proven assemblies, such as the detector mount and wheel mechanisms, from the FLAMINGOS design. Modifications have been made to the dewar design, cryogenic system, and telescope interface to accommodate our telescopes and goals. The mechanical layout of MMIRS is shown in Section III.

3.5.1 Dewar Design

The two dewar sections will be constructed from 7075-T6 aluminum. The LN2 tanks will be welded to the work surfaces; all welds will be rough machined, heat treated to relieve stress, and finally fine machined. The work surface and LN2 tank assembly in each dewar will be suspended from very stiff G10 rings. Kapton heater pads epoxied on the LN2 tanks will allow rapid thermal cycling of the dewars.

3.5.1.1 Cryogenics

The bulk of the MMIRS thermal mass, the optics, filters, grisms, and detector, is housed in the collimator/camera dewar. LN2 cooling will provide excellent temperature stability and will minimize thermal gradients on the optical bench.

3.5.1.2 Wheels

We use a common wheel design for all the MMIRS mechanisms. This is the same wheel design used in FLAMINGOS and TRECS. Wheel positions are defined by mechanical detents, while the home position is defined by a mechanical micro-switch. We expect wheel positions to be repeatable to within 10 µm. The wheels are driven by Phytron cryogenic rated stepper motors. The wheel drive gear/worm placement is designed for proper engagement at cryogenic temperatures. The collimator/camera dewar will have two filter wheels and one grism wheel, located in the collimated beam adjacent to the Lyot stop. Each filter wheel will carry 5 filters with one open slot. Filters with thicknesses of up to 10 mm will be accommodated. The initial complement of filters will include the standard Y, J, H, and K filters, the spectroscopic JH and HK blocking filters, and a dark blocker. The grisms will be carried in a wheel nearly identical to the filter wheels. We use grisms as the primary disperser for MMIRS because of their high efficiency, simple mounting, and the compact instrument design they allow. The Lyot pupil stop will be fixed.

3.5.1.3 Optic Mounts

The optics mounts are athermalized using springs. Axially, the lenses are constrained against three fixed aluminum pads with a thin Kapton spacer. They are spring loaded from the opposite side with a Belleville washer. Radially, the lens rests against 2 fixed Nylon pads and is spring loaded with a third Nylon pad. The thicknesses of the Nylon pads are chosen so that the lenses will be centered both at room temperature and at the operating temperature.
3.5.1.4 Detector Mount.
The mount for the Hawaii-2 array in MMIRS will follow the design used in SWIRC. Electrical connections are made with a multilayer fan-out board. The biases, clock, and signals from the amplifiers are brought out using separate wiring harnesses to help reduce system noise and cross talk. The Hawaii-2 array is cooled by way of the central pins in the chip carrier. The pins are coupled to two copper layers in the fan-out board, which in turn are thermally clamped to the dewar. Because the Hawaii-2 zero insertion force socket does not allow location against a defining surface, alignment will be accomplished using spring loaded screw assemblies and predefined mechanical surfaces. The array must be held flat and located relative to the final element of the camera to roughly 10 µm.

3.5.2 MOS Dewar
The MOS dewar accommodates the interchange of slit masks for MultiObject Spectroscopic observations. The entrance window of the slit mask dewar is the first of the two elements in the coma corrector. The second element of the coma corrector is housed inside the slit mask dewar but will be operated near ambient temperature. An advantage of operating this lens near the ambient temperature is that it will prevent the dewar window from cooling radiatively and condensing water from the air. The slit mask dewar can be thermally cycled during the daytime independently of the camera/collimator dewar that carries the optics.

3.5.2.1 Gate Valve
The slit mask dewar is isolated from the collimator/camera dewar with a gate valve. The gate valve allows us to keep the collimator and camera optics at cryogenic temperatures when thermally cycling the slit mask dewar, and eliminates the need for a warm window below the slit mask. In interlock system prevents the gate valve from opening when it could endanger the cold optics and detector.

3.5.2.2 Rapid Thermal Cycling
MMIRS slit masks must be replaced during the daytime between consecutive nights at the telescope. One of the greatest challenges in achieving rapid thermal cycling is providing efficient heat transfer to the slit mask wheel. We have followed the FLAMINGOS design and used sapphire bearings in a bearing race to maximize thermal conductivity to the wheels. The multislit masks must be cooled to less than 140 K to keep the mask thermal background below the detector dark current (0.1 e– sec⁻¹).

3.5.2.3 Slit Masks
The mask wheel will hold 9 multislit plates, 7 fixed long slits, and a full-field imaging aperture. To make efficient use of the area on the slit mask wheel the slit masks must be tightly spaced. An aperture selection wheel will precede the slit mask wheel to define the appropriate field of view and ensure that light passes through only a single slit mask or long slit. The coma corrector provides a flat focal plane well suited to multislit masks. Thin sheet metal masks offer high thermal conductivity and low front face emissivity to allow the masks to reach an equilibrium temperature of 140 K. A two pixel wide slit at the detector scale is 60 µm wide at the telescope focal plane scale. The slit edges should be uniform to 0.6 µm RMS so that slit transmission variations are kept below 1%. This
uniformity will facilitate flat-fielding and sky subtraction. The laser slit mask cutting systems have advertised repeatabilities of 0.1 µm and accuracies of 0.25 µm, meeting this requirement. At the MMT, at least initially, we anticipate using an outside vendor to cut the slit masks. At Magellan, a laser machining system already exists.

3.6 Electronics
We have developed a CCD controller capable of driving the 36 CCDs (72 channels) in the Megacam mosaic camera and this controller has since been modified to drive the Hawaii-2 array. A Hawaii-2 engineering array has been in operation with SWIRC at the MMT since last summer. We have ordered an ND-14 Dewar to test the MMIRS detector electronics with the science array. This testing should begin in two months and will enable verification of all the detector electronics and cabling, independent of the main MMIRS cryostat.

3.7 Guiding and Wavefront Sensing
The MOS dewar will contain two fixed pickoff mirrors which will divert the outer parts of the 14 arcmin diameter corrected field to two Guider/Wavefront sensor modules. These units are very similar to the current guider units in use at Magellan. They contain optics for direct viewing of the guide star and also for Shack-Hartmann wavefront sensing. Continuous wavefront sensing will be done with one guide star and autoguiding on the other has proven very effective at Magellan. At the MMT, MMIRS will be the first wide-field instrument capable of offering continuous wavefront sensing.

3.8 Software
We have already developed many of the software pieces required to operate MMIRS. These modules are in operation at the MMT with Hectospec, Megacam, and SWIRC. Details are given below, but key existing components are: data acquisition routines, a GUI based exposure sequencing system that allows for efficient observing, and autoguiding software. A new, highly-configurable motor control system has been implemented for the Megacam at Magellan effort and this system will also be used with MMIRS. Additional required software will include modules to monitor the various temperature and vacuum systems, guide camera control, and a Magellan telescope communications module.
FUNCTIONAL AND PERFORMANCE REQUIREMENTS FOR THE MMIRS

SPECIFICATION NUMBER
S-MMIRS-200

Brian McLeod & Paul Martini
Center for Astrophysics
Smithsonian Astrophysical Observatory
Cambridge, MA

Revision History

Version 0.0—Draft, January 2004 G. Nystrom
Version 1.0—Draft, July 2004 B. McLeod
Version 1.1—Released Version, August 2004 P. Martini
Version 1.2— Added Section 315, 13 Sept 2004 B. McLeod
Version 1.2a – Added annotations for CDR 31 March 2005 B. McLeod
Version 1.3 – Reconciled conflicts for CDR 29 April 2005 B. McLeod
Table of Contents

FUNCTIONAL AND PERFORMANCE REQUIREMENTS FOR THE MMIRS .. 1

Revision History .. 1

TABLE OF CONTENTS ... 2

PURPOSE OF THIS DOCUMENT .. 7

REFERENCED DOCUMENTS ... 8

ACRONYM LIST ... 9

100 OPTICAL REQUIREMENTS .. 10

110 Science Requirements .. 10
 111 Wavelength Range .. 10
 112 Detector Format ... 10
 113 Spectral Resolution ... 10
 114 Field of View .. 10
 115 Multi-Slit Capability .. 10
 116 Long Slits .. 11
 117 Imaging Aperture .. 11

120 Optical Specifications ... 11
 121 Pre-Slit Image Quality at Telescope Focus .. 11
 122 Post-Slit Image Quality ... 11
 123 Spectral Direction .. 11

130 Target Acquisition ... 11

140 Baffling .. 12
 141 Thermal shielding ... 12
 142 Optical Baffling ... 12
 143 Lyot Stop .. 12
 144 Ghost Images ... 12
 145 Ghost Pupils .. 12

150 Internal Instrument Background ... 13
 151 MOS Section ... 13
 152 Camera Section ... 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>Throughput</td>
<td>13</td>
</tr>
<tr>
<td>170</td>
<td>General Optics Hardware Requirements</td>
<td>13</td>
</tr>
<tr>
<td>171</td>
<td>Optical Coatings</td>
<td>13</td>
</tr>
<tr>
<td>172</td>
<td>Vacuum Environment</td>
<td>14</td>
</tr>
<tr>
<td>173</td>
<td>Thermal Cycling and Stress in Optics</td>
<td>14</td>
</tr>
<tr>
<td>200</td>
<td>ARRAY AND ARRAY CONTROLLER INTERFACES</td>
<td>15</td>
</tr>
<tr>
<td>210</td>
<td>Science Detector Array Interface</td>
<td>15</td>
</tr>
<tr>
<td>211</td>
<td>Characteristics</td>
<td>15</td>
</tr>
<tr>
<td>220</td>
<td>Science Array Controller Interface</td>
<td>15</td>
</tr>
<tr>
<td>221</td>
<td>Science Array Controller Mechanical Interface</td>
<td>15</td>
</tr>
<tr>
<td>222</td>
<td>Science Array Controller Thermal Interface</td>
<td>16</td>
</tr>
<tr>
<td>230</td>
<td>Science Array Data Handling System Interface</td>
<td>16</td>
</tr>
<tr>
<td>240</td>
<td>Guider Wave Front Sensor</td>
<td>16</td>
</tr>
<tr>
<td>241</td>
<td>GWFS Array Characteristics</td>
<td>16</td>
</tr>
<tr>
<td>242</td>
<td>GWFS Array Mechanical Interface</td>
<td>16</td>
</tr>
<tr>
<td>243</td>
<td>GWFS Array Thermal Interface</td>
<td>16</td>
</tr>
<tr>
<td>244</td>
<td>GWFS Array Optical Interface</td>
<td>16</td>
</tr>
<tr>
<td>245</td>
<td>GWFS Array Controller Mechanical Interface</td>
<td>16</td>
</tr>
<tr>
<td>246</td>
<td>GWFS Array Controller Thermal Interface</td>
<td>17</td>
</tr>
<tr>
<td>247</td>
<td>GWFS Array Software Interface</td>
<td>17</td>
</tr>
<tr>
<td>300</td>
<td>MECHANICAL REQUIREMENTS</td>
<td>18</td>
</tr>
<tr>
<td>310</td>
<td>Rigidity and Repeatability</td>
<td>18</td>
</tr>
<tr>
<td>311</td>
<td>Alignment of the Instrument to the Telescope</td>
<td>18</td>
</tr>
<tr>
<td>312</td>
<td>Tracking with Guider-Wavefront Sensor</td>
<td>18</td>
</tr>
<tr>
<td>313</td>
<td>Motion of Slit Image on Detector</td>
<td>18</td>
</tr>
<tr>
<td>314</td>
<td>Mechanism Repeatability</td>
<td>18</td>
</tr>
<tr>
<td>315</td>
<td>Guider/WFS Mechanism Repeatability</td>
<td>19</td>
</tr>
<tr>
<td>320</td>
<td>Thermal Performance</td>
<td>19</td>
</tr>
<tr>
<td>330</td>
<td>Space Requirements</td>
<td>19</td>
</tr>
<tr>
<td>331</td>
<td>Electronic Enclosures</td>
<td>19</td>
</tr>
<tr>
<td>332</td>
<td>Access to Liquid Nitrogen Ports</td>
<td>19</td>
</tr>
<tr>
<td>333</td>
<td>Electrical Connections</td>
<td>19</td>
</tr>
<tr>
<td>334</td>
<td>Access to MOS Plate Exchange Port</td>
<td>20</td>
</tr>
<tr>
<td>340</td>
<td>Mass and Center of Gravity Requirements</td>
<td>20</td>
</tr>
<tr>
<td>341</td>
<td>Total Mass</td>
<td>20</td>
</tr>
<tr>
<td>342</td>
<td>Center of Gravity</td>
<td>20</td>
</tr>
<tr>
<td>343</td>
<td>Ballast Weight</td>
<td>20</td>
</tr>
<tr>
<td>344</td>
<td>Electronic Enclosures</td>
<td>20</td>
</tr>
</tbody>
</table>
350 Cryogenic Requirements ... 20
 351 Cryostat .. 20
 352 MOS Section ... 20
 353 Hold Time .. 21
 354 Thermal Stability ... 21
 355 Science Array Thermal Interface ... 21
 356 Autofill .. 21
 360 Vacuum System .. 22
 361 Pumpout times .. 22
 362 Vacuum duration ... 22
 363 Gauges .. 22
 364 Isolation Gate Valve ... 22
 365 Backfill System .. 23

370 Operational Requirements for Mechanisms 23
 371 Safety ... 23
 372 Time to Function ... 23
 373 MOS Slitmask Exchange ... 23
 374 Slitmask Barcode Reader ... 23

380 Instrument Handling ... 24

390 Dimensioning .. 24
 391 American Standard Dimensions on Drawings 24
 392 Inch Fasteners ... 24
 393 Simplification .. 24

400 ELECTRICAL AND ELECTRONIC REQUIREMENTS 25

410 Electronic Design Requirements .. 25
 411 Grounding and Shielding .. 25
 412 Electronics Discharge .. 25

420 Temperature Monitoring ... 25
 421 Sensor Interfaces ... 25

500 SOFTWARE REQUIREMENTS .. 26

510 Software Design Requirements ... 26
 511 Required Capabilities ... 26
 512 Required Performance .. 26

600 OBSERVATORY PHYSICAL INTERFACES 27

610 Instrument Support Structure .. 27
 611 Instrument Mounting Plate Material 27
 612 Fasteners .. 27
620 Optical Feed.. 27

630 Electrical Power Interface... 27
 631 Number of Electrical Connections... 28
 632 Length of Electrical Line Runs... 28
 633 Electric Power Line Flexibility... 28
 634 Type of Electrical Connectors... 28

640 Optical Fibers... 28
 641 Camera Interfaces... 28
 642 Ethernet.. 28

650 Coolant Interface .. 29
 651 Number of Plumbing Connections... 29
 652 Length of Cooling Fluid Runs... 29
 653 Cooling Fluid Line Flexibility... 29
 654 Resistance to Glycol or Methanol... 29
 655 Cold plate interface to electronics assemblies... 29
 656 Electronics Racks... 29

660 Liquid Nitrogen.. 30
 661 Number of Liquid Nitrogen Connectors... 30
 662 Length of Liquid Nitrogen Runs.. 30
 663 Types of Liquid Nitrogen Connectors.. 30

670 Dry Air Purge... 30

700 ENVIRONMENT REQUIREMENTS ... 31

710 Altitude Environment.. 31
 711 Transportation Altitudes.. 31
 712 Storage Altitudes... 31
 713 Operation Altitudes.. 31

720 Temperature Environment .. 31
 721 Operational Environment... 31
 722 Survival Environment.. 31
 723 Transportation Environment... 31

730 Humidity Environment ... 32
 731 Transportation Environment... 32
 732 Operational Environment... 32
 732 Battery backup... 32

740 Mechanical Environment... 32

800 OTHER REQUIREMENTS ... 33

810 Documents .. 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>811 Software Maintenance Manual</td>
<td>33</td>
</tr>
<tr>
<td>812 Users Manual</td>
<td>33</td>
</tr>
<tr>
<td>813 Service and Calibration Manual</td>
<td>33</td>
</tr>
<tr>
<td>814 As-Built Drawings</td>
<td>34</td>
</tr>
<tr>
<td>815 Drawing Standards</td>
<td>34</td>
</tr>
<tr>
<td>816 Drawing Numbering</td>
<td>34</td>
</tr>
<tr>
<td>820 Training</td>
<td>34</td>
</tr>
<tr>
<td>830 Reliability</td>
<td>35</td>
</tr>
<tr>
<td>831 Downtime</td>
<td>35</td>
</tr>
<tr>
<td>832 Continuous Duty</td>
<td>35</td>
</tr>
<tr>
<td>840 Maintainability and Serviceability</td>
<td>35</td>
</tr>
<tr>
<td>841 Standard Components</td>
<td>35</td>
</tr>
<tr>
<td>842 Modularity</td>
<td>35</td>
</tr>
<tr>
<td>843 Access</td>
<td>35</td>
</tr>
<tr>
<td>844 Alignment</td>
<td>36</td>
</tr>
<tr>
<td>845 Relative Equipment Arrangements</td>
<td>36</td>
</tr>
<tr>
<td>846 Subassemblies</td>
<td>36</td>
</tr>
<tr>
<td>847 Handling</td>
<td>36</td>
</tr>
<tr>
<td>850 Lifetime</td>
<td>36</td>
</tr>
<tr>
<td>860 Safety</td>
<td>36</td>
</tr>
<tr>
<td>861 Emergency Stop</td>
<td>37</td>
</tr>
<tr>
<td>862 Cautions</td>
<td>37</td>
</tr>
<tr>
<td>870 Slit Masks</td>
<td>37</td>
</tr>
<tr>
<td>871 Mask Material</td>
<td>37</td>
</tr>
<tr>
<td>872 Mask Cutting</td>
<td>37</td>
</tr>
<tr>
<td>873 Mask Design Software</td>
<td>38</td>
</tr>
<tr>
<td>900 SHIPPING AND HANDLING</td>
<td>39</td>
</tr>
<tr>
<td>910 Shipping equipment</td>
<td>39</td>
</tr>
<tr>
<td>920 Container sizes</td>
<td>39</td>
</tr>
<tr>
<td>930 Instrument cart</td>
<td>39</td>
</tr>
</tbody>
</table>
Purpose of this Document

The purpose of the Functional and Performance Requirements document for the MMIRS (MMT & MAGELLAN INFRARED SPECTROMETER) is to provide the CFA Scientific community with an understanding of what MMIRS will do. This document answers the question What? but not the question How? The How? is the design which is derived from and traceable to this document. This document takes precedence over the design and fabrication documents.

The design must serve the requirements in this document completely. This means every feature of MMIRS is traceable to a requirement in this document. This document was written using the FLAMINGOS-2 Functional and Performance Requirements document as a general guide.
Referenced Documents

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magellan 03SE004</td>
<td>Interfaces between the Magellan Clay telescope and the SAO F/5 Cassegrain Instruments and wide field corrector</td>
</tr>
<tr>
<td>MMTO Conversion Technical Memo #00-1</td>
<td>6.5m Instrument Rotator Performance Goals and Specifications, Rev 3*</td>
</tr>
<tr>
<td>MMT Drawing D-MMT0245</td>
<td>As Built Principal Datums</td>
</tr>
<tr>
<td>MMT Drawing B-MMT0217</td>
<td>MMT 6.5m Conversion Instrument Rotator Inner-Race/Turntable Addendum(Sheet #25)</td>
</tr>
<tr>
<td>SAO M-CE100-S1</td>
<td>SAO Drawing Standards</td>
</tr>
</tbody>
</table>
Acronym List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAMINGOS</td>
<td>FLorida Multi-object Immaging Near-IR Grism Observational Spectrometer*, built by the University of Florida, funded by the NSF</td>
</tr>
<tr>
<td>ICD</td>
<td>Interface Control Documentation</td>
</tr>
<tr>
<td>ICS</td>
<td>Insitumet Control System</td>
</tr>
<tr>
<td>CFA</td>
<td>Center For Astrophysics</td>
</tr>
<tr>
<td>SAO</td>
<td>Smithsonian Astrophysical Observatory</td>
</tr>
<tr>
<td>CIR</td>
<td>Cassegrain Insitumet Rotator (MMT & Magellan Rotator)</td>
</tr>
<tr>
<td>TCS</td>
<td>Telescope Control System</td>
</tr>
<tr>
<td>GWFS</td>
<td>Guider-WaveFront Sensor</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width at Half Maximum</td>
</tr>
<tr>
<td>MOS</td>
<td>Multi-Object Spectrometer (MMIRS component)</td>
</tr>
</tbody>
</table>
100 Optical Requirements

110 Science Requirements

MMIRS shall meet all scientific requirements listed below.

111 Wavelength Range

MMIRS shall operate as a spectrograph and imager in the wavelength range 0.9 to 2.4 μm.

See Fabricant, “MMIRS Preconstruction Design” in Section II.

112 Detector Format

MMIRS shall use a HgCdTe Hawaii-2 array 2048 x 2048, with 18 μm square pixels.

By design

113 Spectral Resolution

MMIRS shall provide a low dispersion mode with \(R \equiv \frac{\lambda}{\delta \lambda} \sim 1300 \) (2-pixel resolution) that permits the full octave ranges of 0.9–1.8 μm or 1.25–2.5 μm to be covered by the detector array. MMIRS shall also provide an intermediate dispersion mode with \(R \sim 3000 \) (2-pixel resolution) which will allow observations of each of the \(J, H, \) and \(K \) atmospheric windows on the array, one at a time.

See McLeod, “MMIRS Grism Design” in Section II.

114 Field of View

MMIRS shall provide a 7 arcminute square field of view with 0.2 arcsecond pixels.

See Fabricant “MMIRS Preconstruction Design” in Section II.

115 Multi-Slit Capability

MMIRS shall provide a multi-slit capability with 8 rectangular multi-slit plates. These multi-slit plates shall provide coverage of a 4 by 7 arcminute field of view. See Nystrom, “MOS Dewar Specifications” and “MOS Design”, in Section III. The full spectral range shall be achieved for a 2 by 7 arcminute field of view. See McLeod, “MMIRS Grism Design” in Section II. The slit plates shall be exchangeable during the course of daylight operations.
of one day (less than 9 hours). See Park, “MOS Transient Analysis” in Section VII.

116 Long Slits

MMIRS shall provide a minimum of 7 long slits. All long slits shall be 7 arcminutes in the spatial direction with spectral widths of 1, 2, 3, 4, 6, 8, and 12 pixels. See Nystrom, “MOS Dewar Specifications” and “MOS Design”, in Section III.

117 Imaging Aperture

MMIRS will have one imaging aperture 7 arcminutes square. See Nystrom, “MOS Dewar Specifications” and “MOS Design”, in Section III.

120 Optical Specifications

Instrumental image quality specifications for MMIRS do not include the telescope system or atmospheric turbulence. These specifications are all addressed in Martini “MMIRS Optical Specifications”, in Section II.

121 Pre-Slit Image Quality at Telescope Focus

The preslit image quality shall not degrade the throughput of a 2-pixel slit (0.4 arcseconds) by more than 10% of the idealized MMT and Magellan telescopes. For a beta=2.5 Moffat profile, this requires an instrumental image profile with FWHM < 20 \(\mu m \) at the slit mask plane.

122 Post-Slit Image Quality

The instrumental image profile at the detector shall not degrade the expected median seeing (0.6 arcseconds FWHM) by more than 25%. For a beta=2.5 Moffat profile, this requires an instrumental profile with FWHM < 28 \(\mu m \) (0.31 arcseconds).

123 Spectral Direction

The instrumental image quality in the spectral direction shall produce less than a 25% change in the spectral resolution of a 2-pixel slit (0.4 arcseconds) over the full spectral bandpass. For a beta=2.5 Moffat, this requires an instrumental image profile with FWHM < 28 \(\mu m \) (0.31 arcseconds).

130 Target Acquisition

MMIRS shall provide a means for target acquisition through imaging on the science detector. See Martini “Observing Overview”, in Section XI.
140 Baffling

MMIRS shall be properly baffled to minimize stray radiation. The stray light falling on the detector, but not passing through the entire optical system, shall be less than the detector dark current.

141 Thermal shielding

The MMIRS shall contain sufficient thermal shielding to minimize heat loading on the cryogenic systems.

See Park, “MOS Steady State Analysis” and Park “Camera Steady State and Transient Analysis”, in Section VII.

142 Optical Baffling

MMIRS shall contain proper optical baffling to reduce stray radiation to levels below that of the telescope plus sky background as seen by the science detector.

See Martini, “Stray Light Analysis” in Section II.

143 Lyot Stop

MMIRS shall provide a cold Lyot stop at an image of the telescope pupil (the primary mirror). The position and size of the Lyot stop shall be designed to optimize the SNR.

Awaiting dimensional input from MMTO and Magellan.

144 Ghost Images

The MMIRS optical design shall have no ghost image with a diameter less than 230 μm and fractional illumination per pixel greater 10^-6 the original intensity.

See Martini “Ghost Image Analysis”, in Section II.

145 Ghost Pupils

The sum of all ghost pupils shall result in a <1% peak-to-valley intensity variation across the field.

This particular calculation has not been done. An analysis of the worst ghosts is in Martini “Ghost Image Analysis”, in Section II.
150 Internal Instrument Background

MMIRS shall have an internal instrument background less than either the natural background from the observed science field or the dark current of the detector, whichever is greater.

151 MOS Section

All components visible by the detector in spectroscopic mode must be cooler than 140 K in order to have a negligible contribution to the instrument background.

See Park “MOS Steady State Analysis”, in Section VII.

152 Camera Section

All components visible by the detector must be cooler than 100 K in order to have a negligible contribution to the instrument background.

See Park, “Camera Steady State and Transient Analysis,” in Section VII.

160 Throughput

MMIRS shall be designed to maximize throughput to take maximum advantage of the MMT and Magellan telescopes’ performance. Optical throughput for the entire optical train should be >30% for spectroscopy (goal 40%) and >50% for direct imaging (goal 70%). These throughputs are measured on the optical axis and include filters and gratings but do not include the telescope, atmosphere, or detector.

See McLeod “MMIRS Grism Design” and Martini “MMIRS Throughput Calculation”, in Section II.

170 General Optics Hardware Requirements

171 Optical Coatings

The following characteristics of all optical coatings shall be specified in the design documentation:

- Transmission <2% loss (goal 1%) within each atmospheric window.
- Environmental testing.
- Hardness or equivalent ISO standard.
- Adherence or equivalent ISO standard.
- Abrasion or equivalent ISO standard.
- Humidity.
- Cleanability.
• Water solubility.
• Radioactivity.

• Surface appearance (flaking, peeling, finger prints, pinholes, etc.).
• All coatings shall be unaffected by repeated thermal cycling over the operating, storage, and transportation temperature ranges.

See MMIRS-S-207 “Coating Specification”, in Section II.

172 Vacuum Environment

All optical components and coatings shall meet all performance requirements when operated in a vacuum of less than 10^{-7} Torr at operational temperatures.

173 Thermal Cycling and Stress in Optics

Thermal cycling of the instrument over the ranges specified in Section 720 and during normal operation shall not degrade or destroy the optics and coatings. To avoid damage to the optics, stress levels shall be limited to +/-400 PSI for CaF2, BaF2, and ZnSe elements, and +/-500 PSI for Fused Silica and S-FTM16,

A somewhat pessimistic model indicates a maximum stress of 600PSI in Lens3. See McLeod, Temperature and Stress in Optics, in Section VII.
200 Array and Array Controller Interfaces

210 Science Detector Array Interface

MMIRS design shall provide an integrated array controller for its primary science array.

Geary, “MMIRS IR Array Controller”. Need to review to make sure we address these points.

211 Characteristics

MMIRS shall be designed to take the fullest possible advantage of a HgCdTe Hawaii-2 detector with the following characteristics:

<table>
<thead>
<tr>
<th>Pixels (Number and Format)</th>
<th>2048 × 2048</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>4 independent quadrants of 1024 × 1024 pixels (8 readouts each)</td>
</tr>
<tr>
<td>Pixel size</td>
<td>18 μm, square</td>
</tr>
<tr>
<td>Number of outputs</td>
<td>32 (8 per quadrant)</td>
</tr>
<tr>
<td>Maximum frame rate</td>
<td>0.5 second single-read⁻¹ frame⁻¹</td>
</tr>
<tr>
<td>IR material</td>
<td>HgCdTe</td>
</tr>
<tr>
<td>Full Well (linear range)</td>
<td>100,000 electrons</td>
</tr>
<tr>
<td>Wavelength range</td>
<td>0.9-2.5 μm</td>
</tr>
<tr>
<td>Nominal operating temperature</td>
<td>77 K</td>
</tr>
<tr>
<td>Dark current</td>
<td><0.1 electron second⁻¹</td>
</tr>
<tr>
<td>Read noise</td>
<td><20 electrons (RMS), goal is <5 electrons</td>
</tr>
<tr>
<td>Quantum efficiency</td>
<td>40-60% (0.9-2.5 μm)</td>
</tr>
</tbody>
</table>

220 Science Array Controller Interface

MMIRS shall include all electronic, thermal and mechanical interfaces needed for its science array controller to function on both the MMT and Magellan.

221 Science Array Controller Mechanical Interface

The array controller and all associated analog electronics shall be mounted on the MMIRS instrument and be included in the total mass, moment and space envelope specifications, as per MMT and Magellan observatory requirements and/or specifications.

Holwell, Electronics Packaging, in Section VIII, and Nystrom, Observatory Requirements, Section X.
222 Science Array Controller Thermal Interface

The array controller, power supplies and associated analog electronics shall be enclosed in a thermal rack enclosure.

Holwell, Electronics Packaging, in Section VIII.

230 Science Array Data Handling System Interface

Deleted.

240 Guider Wave Front Sensor

The MMIRS design shall contain two combination Shack-Hartmann wavefront sensors/guide cameras to calculate telescope tracking errors, miscollimation, and primary mirror figure errors.

Except as noted see McLeod “MMIRS Guider/Wavefront Sensor Design”, Section V for all items below.

241 GWFS Array Characteristics

The MMIRS GWFS CCD array shall be large enough to accommodate up to a 20x20 spot Shack Hartmann array. The CCD shall be back-illuminated and must be read out in at least 0.1 seconds.

242 GWFS Array Mechanical Interface

The GWFS shall patrol the area of the MMIRS 14.0 arcminute diameter corrected field outside the 7 arcminute square science field to provide a high probability of finding a guide star.

243 GWFS Array Thermal Interface

The CCD array shall be contained within a separate dewar and cooled to reduce the dark current below the level of the night sky, (nominally -30C).

244 GWFS Array Optical Interface

The optical feed of the GWFS shall provide a working pixel scale in the range 0.1 to 0.25 arcsec pixel\(^{-1}\) and a field stop matched to the lenslet array. The field of view for the guide camera shall be at least 30x30 arcseconds.

245 GWFS Array Controller Mechanical Interface

The array controller and all associated analog electronics shall be mounted on the MMIRS instrument within a 1m cable run of the CCD array.
246 GWFS Array Controller Thermal Interface

The array controller shall be cooled by the MMT and Magellan facility coolant supplies.

See Holwell, “Electronics Rack Packaging”, in Section VIII.

247 GWFS Array Software Interface

The guide camera software shall deliver images to the existing facility MMT and Magellan guiding and wavefront sensing software.

See Software, Servers, Guiding, in Section IX.
300 Mechanical Requirements

310 Rigidity and Repeatability

MMIRS shall be designed to be rigid, and to meet all the requirements listed below.

311 Alignment of the Instrument to the Telescope

The alignment of the MMIRS Lyot stop with the primary mirror shall be set and maintained such that the SNR is degraded by < 2%.

Martini, Optical Specifications, in Section II.

312 Tracking with Guider-Wavefront Sensor

The GWFS image shall not flex relative to the slit masks by more than an amount that shall lead to a 10% loss in throughput due to centering errors in a 2-pixel wide slit during a 2 hour observation. This corresponds to a relative flexure of 0.25 times the width of the slit, or <16 microns. The focus at the guide camera, relative to the slit, shall not change by more than 45 microns over a 30 degree elevation change, with a goal of less than 45 microns over a 60 degree elevation change.

Awaiting publishing of Bergner, Guider-WFS Analysis, in Section VII.

313 Motion of Slit Image on Detector

The image of the slit mask on the detector shall not move by more than an amount which will lead to a 10% degradation in SNR for a 2-pixel FWHM spectral line in 20 minutes. This corresponds to 16 microns of image motion over 30 degrees, with a goal of less than 8 microns. The focus at the IR array shall not change by more than 15 microns over a 30 degree change in elevation, with a goal of <15 microns over a 60 degree elevation change.

See Martini, Fringing Memo, Bergner, Flexure Analysis

314 Mechanism Repeatability

All mechanisms with the exception of the Guider/WFS shall return to a normal position with a repeatability that limits motion of the slit image on the detector to 0.2 pixel and of the object image on the slit to 10 microns.

See Holwell, Camera Mechanical Design, in Section IV.
315 Guider/WFS Mechanism Repeatability

The X, Y, and Select mechanisms in the Guider/WFS shall repeat to 200 microns absolute positioning. The encoder shall be capable of reading the actual position to a accuracy of 10 microns. The focus stage shall repeat to 40 microns with 25microns of encoder accuracy.

See GWFS Mechanical Design, in Section V.

320 Thermal Performance

Thermal gradients in the MMIRS optical bench shall be minimized to prevent degradation of image quality.

See Martini “Optical Specifications”, in Section II. and Park “Camera Steady State and Transient Analysis”, in Section VII.

330 Space Requirements

MMIRS shall fit within the normal MMT or Magellan Clay telescopes envelopes for instruments mounted on the CIR, as specified in MMTO Conversion Technical Memo #00-1 and Magellan 03SE004.

Nystrom, Observatory Requirements in Section X

331 Electronic Enclosures

All MMIRS electronic enclosures mounted to the CIR shall be included when evaluating the MMIRS instrument against the allowable MMT or Magellan envelope, as well as the mass and center of gravity requirements listed in section 340.

Nystrom, Observatory Requirements in Section X

332 Access to Liquid Nitrogen Ports

Liquid nitrogen ports and valves on MMIRS shall be accessible without removing the instrument from the CIR, removing any parts or disconnecting any cables.

McCracken, MOS Design, in Section III & Holwell, Camera Design. Section IV.

333 Electrical Connections

All external electrical connections on MMIRS shall be accessible without removing the instrument from the CIR.
McCracken, MOS Design, Section III & Holwell, Camera Design, Section IV.

334 Access to MOS Plate Exchange Port

Multi-slit plates shall be exchangeable without any instrument disassembly outside removal of the access port when the MOS section is at atmospheric temperature and pressure.

McCracken, MOS Design, in Section III.

340 Mass and Center of Gravity Requirements

MMIRS shall meet all mass and center of gravity requirements listed below. The requirements are derived from MMTO #00-1 and Magellan #03SE004. Items below discussed in Nystrom, “Observatory Requirements”, in Section X.

341 Total Mass

MMIRS shall have a mass of <4400 pounds including any adapter to the CIR.

342 Center of Gravity

MMIRS shall have a center of gravity such that its cantilever moment is <150,000 in-lbs relative to the CIR and its rotational unbalance is <12,000 in-lbs.

343 Ballast Weight

A ballast weight and its supporting structure shall be supplied if required to meet the above requirements.

344 Electronic Enclosures

All MMIRS electronic enclosures mounted on the CIR shall count in the mass and center of gravity requirements listed above.

350 Cryogenic Requirements

MMIRS shall meet all cooling system requirements listed below.

351 Cryostat

The total time to pump and thermally cycle MMIRS shall not exceed one week, including one day for cold tests and one day for engineering when the instrument is warm.

See Martini, Warm Up and Cool Down Procedure, in Section XI,
352 MOS Section
The total time to thermally cycle the MOS section (with the gate valve closed) and exchange all slit masks shall not exceed nine hours. The MOS slits shall be cooled to < 120K and shall reach within 10K of their equilibrium temperature before observing starts.

See Park, MOS Transient Analysis, in Section VII.

353 Hold Time
The steady-state hold time of the MOS and Camera Dewars shall each be at least 30 hours.

See Park “MOS Steady State Analysis” and “Camera Steady State and Transient Analysis in Section VII.

354 Thermal Stability
The science detector assembly shall be thermally coupled to the LN2-cooled worksurface to provide maximum stability without requiring active control of the detector temperature during science operations.

See Park, “Camera Detector Steady State and Transient Analysis”, in Section VII.

355 Science Array Thermal Interface
The array’s fanout board shall be thermally strapped to the cryo-worksurface, and it shall additionally be controlled with a heater and temperature sensor mounted on the fanout board. The maximum rate of temperature change for the detector during warm up and cool down shall not exceed 0.2 K/min. The detector must be the warmest part of the instrument during warmup to protect it from contamination.

See Park, “Camera Detector Steady State and Transient Analysis”, in Section VII and Martini “Operational Procedures”, in Section XI.

356 Autofill
MMIRS shall be equipped with an autofill system for the camera section when not mounted on the telescope and not in transport..

Not yet designed.
360 Vacuum System

MMIRS shall be provided with a built-in turbo pump system. It will be used for evacuation of the MMIRS MOS and the entire instrument. It will provide evacuation of the MOS section when the camera section is valved off.

The camera section will have a blanked off port for evacuation by a laboratory pumping system when the MOS assembly is not present, otherwise the MOS pumping system will be used for evacuation of the entire instrument. The turbo pump’s roughing pump must be a contamination-free pump (no oil) and contained in the electronics rack frame.

Nystrom, Vacuum system design, in Section XI.

361 Pumpout times

The pumpout times for the entire instrument and for the MOS section alone shall be consistent with the requirements in section 350. Pumpout time means to a pressure such that LN2 can be introduced to that section for cooling the instrument to its operational temperature. A pressure of less than 10^{-4} Torr will achieve this goal.

Nystrom, Vacuum system design, in Section XI

362 Vacuum duration

The MMIRS Camera section shall be capable of being kept cold continuously and operated without measurable degradation of LN$_2$ hold time for 6 months.

Nystrom, Vacuum system design, in Section XI.

363 Gauges

The Camera and MOS sections will each be outfitted with pressure measurement devices that operate over the range 760 to 5×10^{-9} Torr. The gauges shall be chosen and positioned so that they do not emit light that can be detected by the science or guider arrays. If this is not possible, then the gauge power must be controllable by software. It must be possible to monitor the output from these gauges with a computer.

Burke, “MMIRS Electrical Design”, Section VIII, and Software Servers, in Section IX.

364 Isolation Gate Valve

The MOS and Camera sections shall be separated by an isolation gate valve. The valve shall have an interlock system that prevents it from being opened when the Camera section is at vacuum and the MOS section is at ambient pressure, or when the Camera section is cold and the MOS section is warm.
See McLeod, “MMIRS Valve Interlock”, in Section X.

365 Backfill System

MMIRS shall have a backfill system that allows pure dry nitrogen to be added to the MOS section to bring it from vacuum to ambient pressure. This operation shall be performed before the MOS access panel is removed. An interlock system shall prevent the backfill from operating when the isolation gate valve is open and the Camera section is cold.

See McLeod, “MMIRS Valve Interlock”, in Section X.

370 Operational Requirements for Mechanisms

MMIRS mechanisms shall meet the requirements listed below.

371 Safety

No mechanism shall be back-driveable in the event of loss of power.

McCracken, “MOS Design”, in Section III and Holwell, Camera Design, Section IV.

372 Time to Function

The goal for all individual mechanisms is to take no more than 10 seconds to operate from any position to any other position. The maximum allowable time is 30 seconds. The time to re-zero or datum any mechanism from an unknown position shall not exceed 60 seconds.

See Compliance Matrix in McCracken, “MOS Design”, in Section III and Holwell, Camera Design, Section IV

373 MOS Slitmask Exchange

There shall be a switch to disconnect external control of the MOS mechanisms during slit mask exchange as well as a button to move the slit mask wheel in increments of one position.

See Burke, MMIRS Electrical Design, Section VIII.

374 Slitmask Barcode Reader

Each slit mask shall have an identifying barcode cut in it. The instrument shall provide a barcode reader which can view that barcode on an installed mask.

See Burke, MMIRS Electrical Design, Section VIII.
380 Instrument Handling

MMIRS shall be designed so that it can be mounted to the CIR using either MMIRS handling equipment or MMT-Magellan Facility equipment.

Nystrom, Shipping and Installation Plans, Section XI.

390 Dimensioning

Inch dimensions shall be used in MMIRS with the exception of the optics drawings and specifications, which shall have metric primary dimensions and inch reference dimensions.

In compliance.

391 American Standard Dimensions on Drawings

Drawings will be carried out in compliance with SAO drafting standard M-CE100-S1.

392 Inch Fasteners

All screws, bolts, nuts, tapped holes, and fasteners shall be of standard inch sizes. Metric screws can be used if required to mount equipment having such hardware requirements.

393 Simplification

Every attempt shall be made to minimize the number of hardware sizes and drives required for instrument assembly and maintenance. The goal is to identify only two, distinct fastener sizes to use throughout MMIRS.
400 Electrical and Electronic Requirements

410 Electronic Design Requirements

411 Grounding and Shielding
Separate ground returns shall be provided for low level signals, noisy components such as heaters and motors, and hardware components such as mechanical enclosures, chassis, and racks.

Burke, MMIRS Electrical Design, Section VIII.

412 Electronics Discharge
The MMIRS design shall protect sensitive components from electrostatic discharge.

See Burke, MMIRS Electrical Design, Section VIII.

420 Temperature Monitoring
Sensors are required to monitor the cryo environment within the instrument, including the detector. Critical locations for temperature sensors include the detector mount, the optical bench, and the radiation shields.
See Martini, “Temperature Sensing”, in Section X, and Burke, “Electrical Design”, in Section VIII.

421 Sensor Interfaces
The temperature sensor read-out interface shall be part of the Engineering Interface.
See Software, GUIS, Section IX.
500 Software Requirements
See Software Section IX.

510 Software Design Requirements

511 Required Capabilities

- Provide high level observing software that coordinates data acquisition, telescope motion, and interaction with the GWFS.
- Provide automated means to center targets onto longslit or multislit masks.
- Take and record images with the IR array including with multiple endpoint sampling.
- Control and read positions of all mechanisms in the cryostat.
- Take images with the GWFS cameras and deliver them to the facility guider and WFS software.
- Control GWFS mechanisms.
- Provide automatic selection of guide stars.
- Provide and maintain status and health information for the cryostat and electronics racks.
- Raise alarm conditions of appropriate severity.
- Log and display meaningful messages when in debug mode or in the event of an error.
- Provide a Motion Control Engineering Interface for all mechanisms.
- Insure the camera section is sealed before and while the MOS section is warmed up and brought to ambient pressure.

512 Required Performance

- Acquire sequences of data with an overhead of less than 5 seconds between exposures (in addition to readout time) when moving the telescope less than 30 arcsec.
- Allow for complete configuration changes in 30 seconds or less with a goal of 10 seconds or less.
- Allow simultaneous motion of mechanisms. Goal is to have sufficient power available to drive all mechanisms at once.
600 Observatory Physical Interfaces

610 Instrument Support Structure

MMIRS shall interface mechanically to the MMT instrument rotator bearing per Multiple Mirror Telescope Observatory drawing B-MMT 0217 of the latest revision. The Magellan interface will be the CFA mounting adapter. It will be identical to the MMT interface for mounting and optical interfacing.

See Telescope Truss Design, in Section X for this and following 2 items.

611 Instrument Mounting Plate Material

The MMIRS mounting interface shall take into account the material of which the CIR is made and shall hold differential temperature effects to a level that permits MMIRS to meet all the optical alignment requirements over the entire operating temperature range.

612 Fasteners

All fasteners shall be of the Unified National Standard (UNS) series. Metric fasteners maybe used when interfacing with equipment made to ISO standards. All fasteners must be sized appropriately to effectively carry applied loads and shall be preloaded to approximately 80% of their ultimate strength.

620 Optical Feed

MMIRS shall accept and use both the MMT and Magellan telescopes optical feed, which is approximately f/5 and combined with a MMIRS corrector the focal length is 33.7159 meters. The beam comes to focus nominally 1430.149 mm (56.31 in.) behind the primary mirror’s vertex or 11.3 mm (0.44 in) inside the CIR mounting surface. Fabricant, MMIRS Preconstruction Design, Section II.

630 Electrical Power Interface

MMIRS shall derive its electrical power through a standard 60-Hz 120V 3-prong AC power connection. Will likely use Hubbell type locking connector. See Burke, MMIRS Electrical Design, in Section VIII for following items.
631 **Number of Electrical Connections**

MMIRS shall have one electrical power connection. The entire instrument will be run off of clean, UPS supported power. MMIRS shall have appropriate local power runs to serve all instrument power needs.

632 **Length of Electrical Line Runs**

A single set of electrical lines will be provided which will allow MMIRS to be mounted on the CIR. A means of dressing the cables to a length appropriate shall be provided.

633 **Electric Power Line Flexibility**

The electrical power line from MMIRS to facility power shall be flexible enough to permit easy routing, connection, disconnection, and dressing for operation.

634 **Type of Electrical Connectors**

The Instrument Interface shall have a single, standard connector for power, an emergency stop button, and wiring for a remote emergency stop. Two channels of switched 120VAC, 60Hz, shall be provided for the MMIRS instrument rack. All lines shall be protected against line surges and lightning induced transients at both ends of the cable run. A separate, identical, cable and power/control channels shall be provided for test purposes and routed to the allocated test area. This will be implemented such that no cable demating and mating shall be required at the rack interface panel location.

640 **Optical Fibers**

MMIRS shall contain optical fiber interfaces for the detectors and ethernet. These fibers shall be duplex SC-SC fibers in black cladding to avoid light leakage. Burke, MMIRS Electrical Design, Section VIII.

641 **Camera Interfaces**

The infrared array and the two guide cameras shall each have a fiber interface.

642 **Ethernet**

Ethernet shall run through a single 1000BaseT fiber.
650 Coolant Interface

MMIRS shall contain an internal rack cooling system that limits its heat dissipation into the ambient environment to 50 Watts or less. The cooling system shall connect to the MMT and Magellan facility coolant supplies.

See Holwell, Electronics Packaging, Section VIII.

651 Number of Plumbing Connections

MMIRS shall have one coolant supply connection and one return line connection for the entire instrument. MMIRS shall have appropriate tees from these lines to serve all instrument cooling water needs.

652 Length of Cooling Fluid Runs

Coolant lines will be provided that permit MMIRS to be used at the CIR or in an instrument preparation lab. A means of dressing the cooling water lines to an appropriate length shall be provided.

653 Cooling Fluid Line Flexibility

The supply and return lines from MMIRS mounted on the telescope to the facility supply shall be flexible enough to permit easy routing, connection, disconnection, and dressing for operation.

654 Resistance to Glycol or Methanol

The cooling fluid lines and connectors shall not be damaged in any way when used with a cooling solution containing glycol or methanol; stainless steel hardware connectors shall be used.

655 Cold plate interface to electronics assemblies

Heat exchangers shall be mounted and thermally coupled to the rack-mounted electronics in such a manner that the rack-mounted electronics can be removed without disconnecting the cooling lines.

656 Electronics Racks

The temperature of the rack-mounted electronics will be monitored. The enclosed electronics shall be protected from overheating with an alarm system and a thermostat cutoff.

Burke, Electronics Design, Section VIII.
660 Liquid Nitrogen

MMIRS shall be provided with fittings for adding liquid nitrogen when the instrument is on the telescopes’ CIR.

Plumbing design is not yet complete, but compliance is expected.

661 Number of Liquid Nitrogen Connectors

A single supply line will be used to supply the Camera dewar and the MOS dewar. A T-fitting with two valves will be part of MMIRS and will direct the LN2 flow to either dewar, or both simultaneously.

662 Length of Liquid Nitrogen Runs

A single line will be provided to reach from a large liquid nitrogen tank on the observatory floor to the liquid nitrogen connector on the MMIRS.

663 Types of Liquid Nitrogen Connectors

A standard ½ inch flare connector shall be used.

670 Dry Air Purge

To avoid condensation on the cryostat window, MMIRS shall be equipped with plumbing to blow clean, dry air across the window. It requires a single supply line, with no return. The fitting type shall be compatible with the MMT and Magellan facilities.

McCracken, MOS Section Design, Section III.
700 Environment Requirements

710 Altitude Environment

MMIRS shall be capable of being transported, stored, and operated at either the MMT or Magellan Clay telescopes.

See Nystrom, Shipping and Installation Plan, Section X.

711 Transportation Altitudes

MMIRS shall be capable of transport at any altitude between -200 feet and 10,000 feet by any transportation mode. MMIRS shall be capable of transport by commercial jet with pressurized cargo compartments at altitudes up to 50,000 feet. MMIRS shall not be at cryogenic temperature when under transport. If shipping under vacuum is not permitted by shipper regulations, then MMIRS shall be back filled with dry nitrogen or dry air.

712 Storage Altitudes

MMIRS shall be capable of storage in or out of its shipping container at any altitude between -200 feet and 10,000 feet.

713 Operation Altitudes

MMIRS shall be capable of operation at any altitude between -200 and 10,000 feet.

720 Temperature Environment

721 Operational Environment

MMIRS operational environment shall be limited to -15 to +40 °C.
See Holwell, Electronics Packaging, in Section VIII

722 Survival Environment

MMIRS shall be capable of surviving a temperature of -51 to +71 °C without damage per MIL-STD-810E.

723 Transportation Environment

MMIRS shall be capable of withstanding a temperature of -51 to +71 °C during transport without damage.
730 Humidity Environment

731 Transportation Environment

MMIRS shall be capable of transport and storage at a wide range of altitude environments in the range of 0 to 100% relative humidity and with condensing moisture.

See Nystrom, Shipping and Installation, in Section X.

732 Operational Environment

MMIRS shall be capable of operation in relative humidities ranging from 0% to 90%. To prevent condensation on the dewar window, this may require an ambient temperature clean air purge and/or heating of the perimeter of the dewar window.

McCracken, MOS Section Design, Section III.

732 Battery backup

Any required window heating system must include battery backup power for up to 24 hours during lightning power-down times.

Thermal analysis indicates Lens1 temp won’t drop significantly so no heater is required. See Park, MOS Steady State Analysis, Section VII.

740 Mechanical Environment

MMIRS shall be capable of operation in the mechanical environments of the MMT and Magellan Clay telescopes and their base facilities, and shall be capable of withstanding shipment among Cambridge, Tucson, and Las Campanas.
800 Other Requirements

810 Documents

MMIRS shall be delivered with adequate documentation to facilitate the operation, maintenance, and repair of the instrument.

811 Software Maintenance Manual

This document shall describe the software at a level of detail sufficient for a competent programmer, not initially familiar with the software, to maintain it properly. This includes detailed verbal descriptions of all software systems and sub-systems written by SAO at a high level, including purpose, organization, and interaction with any other software systems and sub-systems. Included are any systems analyses, data flow diagrams, data dictionaries, structure charts, and mini-specs developed during the software design process, updated to reflect as-built conditions. Also included are listings of all software delivered as part of MMIRS, including firmware in ROM's, PROM's, and Xilinx processors. All software source code modules shall include a standard header documenting the module contents, and each module shall contain a sufficient number of comments explaining the purpose and function of each section of code such that a programmer unfamiliar with the software can understand it. Any systems engineering analyses that led to the allocation of functions between hardware and software or the software design shall also be included.

The CDR Software document largely fills this role. Source code will be maintained in a CVS repository.

812 Users Manual

The users manual shall contain sufficient detail of both instrument operation and instrument performance that MMIRS observations can be carried out by both general users and observatory staff.

The Users Manual will be written during the MMIRS commissioning phase.

813 Service and Calibration Manual

The service and calibration manual shall detail all routine calibration and testing needed to ensure that MMIRS is operating with its design parameters. The service manual shall list and explain all routine service procedures needed to maintain MMIRS in an operational state.

An outline is provided in the Assembly and Test Plan, in Section XI. Detailed procedures will be developed during the Assembly and Test phase.
814 As-Built Drawings

The as-built drawings shall show all dimensions in inches, down to 0.01 inches, or higher precision if needed for proper tolerance. All fasteners specified in these drawings shall be standard inch sizes. All drawings shall otherwise be to SAO-CE standards used in instruments of similar size, function, and complexity.

In compliance.

815 Drawing Standards

The drawings shall comply to SAO standard M-CE100-S1.

In compliance.

816 Drawing Numbering

A separate numbering system shall be instituted for the MMIRS program with number assignments conforming with SAO standard M-CE100-S1. All drawings and documentation shall also be accessible on a MMIRS web site.

The numbering system shall conform to SAO standard M-CE100-S1, where;

- MMIRS is the alpha component identifying the program, it is followed by the numeric section identifying disciplines and other documentation. The numeric attributes are as follows:
 - 001-099 Conceptual designs and layouts
 - 200-399 Procedures, Specifications, Test procedures
 This series requires a prefix to denote type, i.e., P-MMIRS-200, S-MMIRS-200 or TP-MMIRS-200
 - 400-499 Mechanical interface control drawings
 - 500-999 Mechanical assemblies, source control drawing, altered item drawings and detail drawings.
 - 4000-4999 Mechanical ground support drawings (all types).
 - 5000-5099 Electrical interface control drawings
 - 5100-7999 All Electrical drawings for instrument
 - 8000-9999 All Electrical ground support equipment

In compliance.

820 Training

The MMIRS development team shall provide training documentation and a training course to MMT and Magellan operations personnel on the operation, maintenance, and repair of MMIRS.
To be done during commissioning. See Maintenance and Serviceability, in Section XI.

830 Reliability

See Maintenance and Serviceability, in Section XI.

831 Downtime

MMIRS shall have a total downtime of 2%, with 1% as a goal. Where possible, component failure shall result in gradual performance degradation. Single point failures that may result in significant downtime shall be determined and, where necessary, critical spares shall be identified.

832 Continuous Duty

MMIRS shall be designed and built for continuous operation. Modules containing moving parts shall be designed or selected to meet observational requirements without excessive downtime.

840 Maintainability and Serviceability

MMIRS shall meet the following requirements for maintainability, as outlined in our Proposal.

See Maintenance and Serviceability, in Section XI.

841 Standard Components

Whenever possible, MMIRS shall use unmodified, commercially available, standard components, and components taken from FLAMINGOS, FLAMINGOS-2 and other SAO instruments for the MMT and Magellan.

842 Modularity

To the extent possible, the MMIRS shall be designed to be modular.

843 Access

Access to components and subassemblies shall be considered in the MMIRS design, particularly for those elements that are accessed frequently. Tool and hand clearances shall be considered, as well as space required to remove modules, visual access to components (or a means to feel their correct position and alignment, e.g., for electronic connectors).
844 Alignment
Alignment of optical components shall be achieved to the extent possible by accurate machining of component features.

Nystron, Optic Mounting Description, in Section IV

845 Relative Equipment Arrangements
Equipment shall be located with due consideration of the sequence of operations involved in maintenance procedures. To the extent possible, the most accessible locations shall be reserved for the items requiring most frequent access.

Holwell, Electrical Packaging, in Section VIII

846 Subassemblies
Subassemblies of the equipment that require more frequent service (inspection, adjustments, repair, or replacement) shall be configured as plug-in modules or, if in racks, as drawers that can be withdrawn easily.

Holwell, Electrical Packaging, in Section VIII

847 Handling
Modules greater than 20 kg in mass shall have suitable handles for use in removing, replacing, and carrying them. Handles shall be located such that the vector sum of resultant handling forces shall pass close to the center of gravity of the unit.

McCracken, MOS Design, in Section III and Holwell, Camera Design, Section IV.

850 Lifetime
The MMIRS shall be designed for an operational lifetime of 10 years without a major overhaul. Components likely to affect the lifetime requirement shall be identified.

See Maintenance and Serviceability, in Section XI.

860 Safety
MMIRS shall be designed in such a way that it will not present a safety hazard to personnel while in transport, attached to the CIR, or during operation.
861 Emergency Stop

A power cutoff switch for the instrument mechanisms shall be attached to the instrument in an easily accessible location. A second switch attached to a long cable shall be added during assembly and testing.

Burke, MMIRS Electrical Design, in Section VIII.

862 Cautions

Placards shall be attached to indicate areas were caution must be exercised.

See MOS Section Design, in Section III.

870 Slit Masks

The goal turnaround time for fabricating masks shall be less than 5 days from the time imaging data is taken until masks are ready for installation in MMIRS. This allows preparatory imaging and spectroscopy of a given field during the same observing run.

Abandoned this goal. Masks must be designed 4 weeks in advance, in conformance with other Magellan instruments.

871 Mask Material

The mask material must be opaque at near-IR wavelengths (over 0.9–2.6 μm). By opaque we require attenuation of at least 1 part in 10^5 (12.5 magnitudes) so that the background will be reduced to below the detector dark current.

The mask material must have sufficiently high heat conductivity and appropriate thermal finishes so that the center of the mask will be cold enough to meet the requirements of section 150 when exposed to room temperature thermal radiation on the upper side.

Expect 3 K center-to-edge gradient even with a black surface looking up.

The recommended mask material is anodized aluminum sheeting, 0.003 inches thick, as used in FLAMINGOS.

Adopted.

872 Mask Cutting

MMIRS shall use a mask material which can be machined using the existing Magellan IMACS laser cutter. The performance goal for this mask maker for MMIRS is that it should machine slits as narrow as 0.2 arcseconds with a regularity on pixel-to-pixel scales less than 1% along the spatial direction.
The mask maker should be capable of making irregular or curved slits if desired.

See above.

873 Mask Design Software

MMIRS shall have mask design software. The goal is that MMIRS shall use the same mask design software as IMACS, Binospec, or Flamingos.

See Software, Section IX.
900 Shipping and Handling

See Nystrom, Shipping and Handling in Section XI.

910 Shipping equipment

The MMIRS instrument shall be broken down into components for shipment. All components shall be placed in sealed containers. The containers shall provide vibration and shock attenuation, dessicant, pressure control, and lifting provisions. The containers shall also have labels to identify any special handling or safety requirements.

920 Container sizes

All containers shall be sized to allow air transport and shall be provided with handles, lift devices, and forklift ports, as required. All containers must be sized to allow passage into the observatory buildings.

930 Instrument cart

A MMIRS instrument cart shall be designed to allow holding the assembled cryostat for transport within a laboratory space and to provide for instrument rotation of 90 degrees. Rotation with the telescope mounting truss and electronics racks are installed is not required.

The instrument cart shall also serve to install the MMIRS on the MMT telescope with the telescope mount and the electronics racks attached. At the Magellan telescope the cart will be used for instrument assembly, test, and storage, but a separate lift cart will be used for installation on the telescope.
Section II.

Optic Design and Analysis

1. Optical Design Description
2. Optical Specification
3. Ghost Analysis
4. Throughput Calculations
5. Coatings
6. Grism Design
7. Fringing
8. Stray Light Analysis
1 What is a Preconstruction Design?

A preconstruction design has sufficient design maturity to serve as a basis for mechanical design and to obtain quotes for the optics. **A preconstruction design should not be built. Further optimization and design refinement is required.** Every element drawing from the preconstruction design should have a clear stamp: “for quotation only, do not build”. Furthermore, the camera and collimator optics in the design are at cryogenic temperatures, and all spacings, thicknesses and radii need to be translated to room temperature for fabrication.

What work remains on the MMIRS optics? We need to carefully check over all of the cryogenic refractive index data, check the effect of working in vacuum (absolute indices as opposed to the current indices relative to air), obtain meltsheet data for the S-FTM16, determine the final working temperature for each optic, and reoptimize the optics using these data. In order to translate the cryogenic design to construction at room temperature we need to have accurate coefficients of thermal expansion. If possible, we would like to sharpen up the collimator’s pupil image without giving up a significant amount of image quality. In addition, a careful ghost image analysis should be performed and documented.

2 Where Did This Design Come From?

The MMIRS preconstruction design uses a new collimator by Harland Epps (RUN101804BF) and a camera by Daniel Fabricant (CAM022204L_REOPT). The camera is based on an original design by Harland Epps, but further developed by Dan. The REOPT refers to the fact that it was reoptimized against Dan’s COL_022704D after its original optimization in perfectly parallel light. The lens radii and final focus were allowed to readjust, but element spacings and lens thicknesses were fixed for this reoptimization. In the preconstruction design, Dan switched to the new NEW_EPPSIR refractive indices and refocussed, but did not further reoptimize. Attempts to further reoptimize the CAM022204L_REOPT against the RUN101804BF collimator did not result in improvement.

3 Prescription

The preconstruction design uses a single aspheric on the leading edge of the first collimator element. The diameters shown are the minimum clear apertures. The collimator apertures have been taken from Harland Epp’s calculation, which gave slightly larger numbers than ZEMAX. The camera numbers are the maximums from the multi-configuration ZEMAX file. The coma corrector elements have been sized for a 14’
diameter field. I would allow ~5 mm margin on all clear apertures to avoid scattered light and reflections, plus whatever is required for mounting.

C:\docs\Zemax_Files\MMIRS\Precons\MMIRS_col_101804bf_cam_0222041_.new_reopt.ZMX
Date: WED OCT 20 2004

<table>
<thead>
<tr>
<th>Surf</th>
<th>Type</th>
<th>Comment</th>
<th>Radius</th>
<th>Thickness</th>
<th>Glass</th>
<th>Diameter</th>
<th>Conic</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJ</td>
<td>STANDARD</td>
<td>Infinity</td>
<td>Infinity</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STO</td>
<td>STANDARD</td>
<td>-16255.300</td>
<td>-6179.233</td>
<td>MIRROR</td>
<td>6502.400</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>STANDARD</td>
<td>-5150.890</td>
<td>6179.233</td>
<td>MIRROR</td>
<td>1593.118</td>
<td>-2.6947</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>STANDARD</td>
<td>Infinity</td>
<td>1430.149</td>
<td></td>
<td>436.154</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>STANDARD</td>
<td>2126.526</td>
<td>50.000</td>
<td>CAF2</td>
<td>208.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>STANDARD</td>
<td>-1502.700</td>
<td>20.000</td>
<td>CAF2</td>
<td>189.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>STANDARD</td>
<td>229.680</td>
<td>20.000</td>
<td>CAF2</td>
<td>177.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>STANDARD</td>
<td>162.313</td>
<td>310.000</td>
<td></td>
<td>98.795</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>STANDARD</td>
<td>Infinity</td>
<td>100.000</td>
<td></td>
<td>98.795</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>EVENASPH</td>
<td>242.930</td>
<td>51.000</td>
<td>NEW_CAF2/IN</td>
<td>124.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>STANDARD</td>
<td>-169.512</td>
<td>154.063</td>
<td></td>
<td>124.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>STANDARD</td>
<td>-84.406</td>
<td>6.000</td>
<td>NEW_CAF2/IN</td>
<td>74.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>STANDARD</td>
<td>107.521</td>
<td>83.746</td>
<td></td>
<td>76.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>STANDARD</td>
<td>Infinity</td>
<td>23.000</td>
<td>NEW_BAF2/IN</td>
<td>111.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>STANDARD</td>
<td>-104.197</td>
<td>7.234</td>
<td></td>
<td>113.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>STANDARD</td>
<td>-132.397</td>
<td>8.000</td>
<td>NEW_ZNSE/IN</td>
<td>111.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>STANDARD</td>
<td>-148.777</td>
<td>10.000</td>
<td></td>
<td>115.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>STANDARD</td>
<td>Infinity</td>
<td>11.000</td>
<td>NEW_FQTZ/IN</td>
<td>115.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>STANDARD</td>
<td>413.230</td>
<td>26.554</td>
<td></td>
<td>115.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>STANDARD</td>
<td>1132.434</td>
<td>21.000</td>
<td>NEW_CAF2/IN</td>
<td>117.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>STANDARD</td>
<td>-214.539</td>
<td>65.000</td>
<td></td>
<td>118.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>STANDARD</td>
<td>Infinity</td>
<td>165.000</td>
<td></td>
<td>107.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>STANDARD</td>
<td>281.500</td>
<td>38.000</td>
<td>NEW_CAF2/IN</td>
<td>139.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>STANDARD</td>
<td>-305.335</td>
<td>17.359</td>
<td></td>
<td>138.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>STANDARD</td>
<td>-243.673</td>
<td>6.993</td>
<td>NEW_S-FTM16/IN</td>
<td>134.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>STANDARD</td>
<td>6459.728</td>
<td>10.739</td>
<td></td>
<td>135.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>STANDARD</td>
<td>273.225</td>
<td>33.806</td>
<td>NEW_CAF2/IN</td>
<td>137.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>STANDARD</td>
<td>Infinity</td>
<td>181.385</td>
<td></td>
<td>135.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>STANDARD</td>
<td>192.218</td>
<td>22.000</td>
<td>NEW_BAF2/IN</td>
<td>113.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>STANDARD</td>
<td>-969.285</td>
<td>28.270</td>
<td></td>
<td>109.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>STANDARD</td>
<td>160.890</td>
<td>38.000</td>
<td>NEW_CAF2/IN</td>
<td>92.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>STANDARD</td>
<td>1906.067</td>
<td>26.090</td>
<td></td>
<td>76.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>STANDARD</td>
<td>-138.260</td>
<td>8.000</td>
<td>NEW_S-FTM16/IN</td>
<td>60.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>STANDARD</td>
<td>139.853</td>
<td>23.853</td>
<td></td>
<td>56.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IMA</td>
<td>STANDARD</td>
<td>Infinity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SURFACE DATA DETAIL:

Surface 9 : EVENASPH
Coeff on r 2 : 0
Coeff on r 4 : -4.813075e-008
Coeff on r 6 : 1.9562193e-012
Coeff on r 8 : -4.471975e-017
GLOBAL VERTEX COORDINATES, ORIENTATIONS, AND ROTATION/OFFSET MATRICES:

<table>
<thead>
<tr>
<th>Surf</th>
<th>R11</th>
<th>R12</th>
<th>R13</th>
<th>X</th>
<th>R21</th>
<th>R22</th>
<th>R23</th>
<th>Y</th>
<th>R31</th>
<th>R32</th>
<th>R33</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>2</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>-6.179232967E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>3</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>4</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.430149000E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>5</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.480149000E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>6</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.500149000E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>7</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.520149000E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>8</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.520149000E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>9</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.930149000E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>10</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>1.981148868E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>11</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>2.135211528E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>12</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>2.141211525E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td>13</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>2.141211525E+003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
<td>0.00000000</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.224957664E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.255191798E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.263191794E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.273191785E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.284191785E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.310746097E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.331746074E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.396746074E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.561746074E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.599746220E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.617054658E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.634837276E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>2.648372776E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0000000000</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000E+000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Row 1</td>
<td>Row 2</td>
<td>Row 3</td>
<td>Row 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>2.668642905E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>2.850028214E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>2.872028269E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>2.900298746E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>2.938298748E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>2.964389120E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
<td>2.972389161E+003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Performance

Executing C:\DOCS\ZEMAX_FILES\MACROS\QSPOTALL.ZPL.

Zemax file is: MMIRS_col_101804bf_cam_022204l_multi_new_reopt.ZMX
Date: WED OCT 20 2004 Zemax Ver: 40722

Configuration: 1, **Y-Band Imaging**

Averaged over all wavelengths and field angles with refocus 0.00300000

<table>
<thead>
<tr>
<th></th>
<th>rms</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.2</td>
<td>20.7</td>
<td>23.8</td>
<td>25.2</td>
</tr>
</tbody>
</table>

X Field angles (arcmin):
- 0.0000 2.4990 4.0002 5.0000

Y Field angles (arcmin):
- 0.0000 0.0000 0.0000 0.0000

RMS Image Diameters:

<table>
<thead>
<tr>
<th></th>
<th>0.90000</th>
<th>29.1</th>
<th>19.1</th>
<th>15.6</th>
<th>22.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95000</td>
<td>15.2</td>
<td>6.9</td>
<td>7.8</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>1.00000</td>
<td>2.9</td>
<td>10.7</td>
<td>15.8</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>1.05000</td>
<td>8.7</td>
<td>19.4</td>
<td>24.3</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>1.10000</td>
<td>13.6</td>
<td>24.2</td>
<td>28.8</td>
<td>21.6</td>
</tr>
</tbody>
</table>

80% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th></th>
<th>0.90000</th>
<th>34.5</th>
<th>22.7</th>
<th>19.5</th>
<th>26.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95000</td>
<td>16.7</td>
<td>8.7</td>
<td>9.0</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>1.00000</td>
<td>4.4</td>
<td>15.0</td>
<td>22.9</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>1.05000</td>
<td>12.1</td>
<td>26.6</td>
<td>31.9</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>1.10000</td>
<td>18.8</td>
<td>31.7</td>
<td>37.7</td>
<td>28.3</td>
</tr>
</tbody>
</table>

90% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th></th>
<th>0.90000</th>
<th>38.6</th>
<th>24.9</th>
<th>21.4</th>
<th>31.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95000</td>
<td>19.5</td>
<td>9.4</td>
<td>11.1</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>1.00000</td>
<td>5.2</td>
<td>17.2</td>
<td>25.7</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>1.05000</td>
<td>12.7</td>
<td>28.3</td>
<td>36.7</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>1.10000</td>
<td>19.3</td>
<td>34.3</td>
<td>42.4</td>
<td>35.1</td>
</tr>
</tbody>
</table>

95% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th></th>
<th>0.90000</th>
<th>38.6</th>
<th>26.8</th>
<th>24.1</th>
<th>33.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95000</td>
<td>19.5</td>
<td>9.6</td>
<td>11.7</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>1.00000</td>
<td>5.3</td>
<td>18.2</td>
<td>26.4</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>1.05000</td>
<td>12.7</td>
<td>31.1</td>
<td>38.5</td>
<td>32.4</td>
</tr>
<tr>
<td></td>
<td>1.10000</td>
<td>19.3</td>
<td>37.2</td>
<td>45.0</td>
<td>37.2</td>
</tr>
</tbody>
</table>

X Centroids:

<table>
<thead>
<tr>
<th></th>
<th>0.90000</th>
<th>0.0000</th>
<th>-13.1527</th>
<th>-21.0397</th>
<th>-26.3196</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95000</td>
<td>0.0000</td>
<td>-13.1534</td>
<td>-21.0405</td>
<td>-26.3198</td>
</tr>
<tr>
<td></td>
<td>1.00000</td>
<td>0.0000</td>
<td>-13.1538</td>
<td>-21.0407</td>
<td>-26.3194</td>
</tr>
</tbody>
</table>
Configuration: 2, J-Band Imaging

Averaged over all wavelengths and field angles with refocus -0.05000000

<table>
<thead>
<tr>
<th></th>
<th>90%</th>
<th>95%</th>
<th>80%</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Field angles (arcmin):</td>
<td>4.0002</td>
<td>5.0000</td>
<td>2.4990</td>
<td>9.6</td>
</tr>
<tr>
<td>Y Field angles (arcmin):</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>RMS Image Diameters:</td>
<td>14.5</td>
<td>14.5</td>
<td>14.4</td>
<td>9.6</td>
</tr>
<tr>
<td>80% Encircled Energy Diameters:</td>
<td>17.6</td>
<td>16.7</td>
<td>15.8</td>
<td>10.8</td>
</tr>
<tr>
<td>90% Encircled Energy Diameters:</td>
<td>19.4</td>
<td>18.4</td>
<td>17.4</td>
<td>16.9</td>
</tr>
</tbody>
</table>
95% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000</td>
<td>19.4</td>
<td>9.5</td>
<td>11.7</td>
<td>15.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10000</td>
<td>4.9</td>
<td>19.5</td>
<td>26.7</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20000</td>
<td>5.0</td>
<td>18.8</td>
<td>25.7</td>
<td>17.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30000</td>
<td>9.2</td>
<td>9.2</td>
<td>15.2</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.40000</td>
<td>21.4</td>
<td>11.2</td>
<td>9.5</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X Centroids:

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
</tr>
</thead>
</table>

Y Centroids:

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
<th>Y4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.10000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.20000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.30000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.40000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Traced Rays/Rays in Entrance Pupil:

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Rays in</th>
<th>Rays in</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000</td>
<td>113/113</td>
<td>113/113</td>
</tr>
<tr>
<td>1.10000</td>
<td>113/113</td>
<td>113/113</td>
</tr>
<tr>
<td>1.20000</td>
<td>113/113</td>
<td>113/113</td>
</tr>
<tr>
<td>1.30000</td>
<td>113/113</td>
<td>113/113</td>
</tr>
<tr>
<td>1.40000</td>
<td>113/113</td>
<td>113/113</td>
</tr>
</tbody>
</table>

Configuration: 3, H-Band Imaging

Averaged over all wavelengths and field angles with refocus 0.03200000

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>rms</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>10.1</td>
<td>12.6</td>
<td>14.3</td>
<td>14.8</td>
</tr>
</tbody>
</table>

X Field angles (arcmin):

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>X Field angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>2.4990 4.0002 5.0000</td>
</tr>
</tbody>
</table>

Y Field angles (arcmin):

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Y Field angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000 0.0000 0.0000</td>
</tr>
</tbody>
</table>

RMS Image Diameters:

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40000</td>
<td>5.5</td>
<td>15.0</td>
<td>18.1</td>
<td>10.6</td>
</tr>
<tr>
<td>1.50000</td>
<td>4.6</td>
<td>7.4</td>
<td>9.8</td>
<td>6.8</td>
</tr>
<tr>
<td>1.60000</td>
<td>10.3</td>
<td>4.7</td>
<td>5.4</td>
<td>10.9</td>
</tr>
</tbody>
</table>
Optical Design Description

80% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40000</td>
<td>7.7</td>
<td>19.8</td>
<td>24.2</td>
<td>14.4</td>
</tr>
<tr>
<td>1.50000</td>
<td>6.5</td>
<td>10.2</td>
<td>13.4</td>
<td>8.1</td>
</tr>
<tr>
<td>1.60000</td>
<td>11.3</td>
<td>6.0</td>
<td>6.6</td>
<td>13.6</td>
</tr>
<tr>
<td>1.70000</td>
<td>14.8</td>
<td>8.9</td>
<td>8.2</td>
<td>19.1</td>
</tr>
<tr>
<td>1.80000</td>
<td>16.9</td>
<td>10.5</td>
<td>9.9</td>
<td>21.6</td>
</tr>
</tbody>
</table>

90% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40000</td>
<td>8.1</td>
<td>22.5</td>
<td>27.8</td>
<td>17.5</td>
</tr>
<tr>
<td>1.50000</td>
<td>6.9</td>
<td>12.5</td>
<td>16.9</td>
<td>9.8</td>
</tr>
<tr>
<td>1.60000</td>
<td>12.0</td>
<td>6.7</td>
<td>8.4</td>
<td>15.1</td>
</tr>
<tr>
<td>1.70000</td>
<td>17.2</td>
<td>9.6</td>
<td>9.0</td>
<td>20.3</td>
</tr>
<tr>
<td>1.80000</td>
<td>19.4</td>
<td>11.4</td>
<td>10.9</td>
<td>23.0</td>
</tr>
</tbody>
</table>

95% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40000</td>
<td>8.3</td>
<td>23.9</td>
<td>29.2</td>
<td>19.2</td>
</tr>
<tr>
<td>1.50000</td>
<td>7.0</td>
<td>12.9</td>
<td>17.3</td>
<td>10.0</td>
</tr>
<tr>
<td>1.60000</td>
<td>12.0</td>
<td>6.9</td>
<td>9.1</td>
<td>15.7</td>
</tr>
<tr>
<td>1.70000</td>
<td>17.2</td>
<td>10.1</td>
<td>9.3</td>
<td>20.5</td>
</tr>
<tr>
<td>1.80000</td>
<td>19.4</td>
<td>11.9</td>
<td>11.9</td>
<td>23.8</td>
</tr>
</tbody>
</table>

X Centroids:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40000</td>
<td>0.0000</td>
<td>-13.1614</td>
<td>-21.0515</td>
<td>-26.3307</td>
</tr>
<tr>
<td>1.50000</td>
<td>0.0000</td>
<td>-13.1626</td>
<td>-21.0532</td>
<td>-26.3326</td>
</tr>
<tr>
<td>1.60000</td>
<td>0.0000</td>
<td>-13.1634</td>
<td>-21.0543</td>
<td>-26.3336</td>
</tr>
<tr>
<td>1.70000</td>
<td>0.0000</td>
<td>-13.1638</td>
<td>-21.0547</td>
<td>-26.3337</td>
</tr>
<tr>
<td>1.80000</td>
<td>0.0000</td>
<td>-13.1638</td>
<td>-21.0545</td>
<td>-26.3331</td>
</tr>
</tbody>
</table>

Y Centroids:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.50000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.60000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.70000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.80000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
</tr>
</tbody>
</table>

Traced Rays/Rays in Entrance Pupil:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Traced Rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40000</td>
<td>113/ 113</td>
</tr>
<tr>
<td>1.50000</td>
<td>113/ 113</td>
</tr>
<tr>
<td>1.60000</td>
<td>113/ 113</td>
</tr>
<tr>
<td>1.70000</td>
<td>113/ 113</td>
</tr>
<tr>
<td>1.80000</td>
<td>113/ 113</td>
</tr>
</tbody>
</table>
Configuration: 4, K-Band Imaging

Averaged over all wavelengths and field angles with refocus 0.01300000

<table>
<thead>
<tr>
<th></th>
<th>rms</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>diameters (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.6</td>
<td>16.8</td>
<td>18.9</td>
<td>20.7</td>
<td></td>
</tr>
</tbody>
</table>

X Field angles (arcmin):

<table>
<thead>
<tr>
<th>Field Angles (arcmin)</th>
<th>0.0000</th>
<th>2.4990</th>
<th>4.0002</th>
<th>5.0000</th>
</tr>
</thead>
</table>

Y Field angles (arcmin):

<table>
<thead>
<tr>
<th>Field Angles (arcmin)</th>
<th>0.0000</th>
<th>0.0000</th>
<th>0.0000</th>
<th>0.0000</th>
</tr>
</thead>
</table>

RMS Image Diameters:

<table>
<thead>
<tr>
<th></th>
<th>2.00000</th>
<th>18.7</th>
<th>11.3</th>
<th>11.2</th>
<th>22.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.12500</td>
<td>14.0</td>
<td>7.5</td>
<td>8.1</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td>2.25000</td>
<td>7.7</td>
<td>5.8</td>
<td>6.8</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>2.37500</td>
<td>6.6</td>
<td>12.4</td>
<td>12.5</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>2.50000</td>
<td>16.1</td>
<td>22.9</td>
<td>22.3</td>
<td>16.3</td>
</tr>
</tbody>
</table>

80% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th></th>
<th>2.00000</th>
<th>19.7</th>
<th>13.5</th>
<th>12.9</th>
<th>26.9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.12500</td>
<td>15.5</td>
<td>10.0</td>
<td>9.9</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>2.25000</td>
<td>11.1</td>
<td>6.8</td>
<td>8.1</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>2.37500</td>
<td>9.1</td>
<td>16.2</td>
<td>16.3</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>2.50000</td>
<td>23.9</td>
<td>29.9</td>
<td>29.2</td>
<td>21.3</td>
</tr>
</tbody>
</table>

90% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th></th>
<th>2.00000</th>
<th>21.9</th>
<th>14.4</th>
<th>14.7</th>
<th>28.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.12500</td>
<td>15.8</td>
<td>11.0</td>
<td>11.6</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>2.25000</td>
<td>11.1</td>
<td>7.6</td>
<td>9.4</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>2.37500</td>
<td>10.5</td>
<td>18.0</td>
<td>19.2</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>2.50000</td>
<td>27.1</td>
<td>32.6</td>
<td>34.2</td>
<td>25.2</td>
</tr>
</tbody>
</table>

95% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th></th>
<th>2.00000</th>
<th>21.9</th>
<th>15.9</th>
<th>15.7</th>
<th>29.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.12500</td>
<td>15.8</td>
<td>11.4</td>
<td>12.9</td>
<td>27.6</td>
</tr>
<tr>
<td></td>
<td>2.25000</td>
<td>11.3</td>
<td>9.9</td>
<td>10.5</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>2.37500</td>
<td>10.5</td>
<td>22.7</td>
<td>23.4</td>
<td>18.1</td>
</tr>
<tr>
<td></td>
<td>2.50000</td>
<td>27.1</td>
<td>39.3</td>
<td>39.3</td>
<td>26.7</td>
</tr>
</tbody>
</table>

X Centroids:

<table>
<thead>
<tr>
<th></th>
<th>2.00000</th>
<th>0.0000</th>
<th>-13.1622</th>
<th>-21.0512</th>
<th>-26.3281</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.12500</td>
<td>0.0000</td>
<td>-13.1613</td>
<td>-21.0494</td>
<td>-26.3249</td>
</tr>
<tr>
<td></td>
<td>2.25000</td>
<td>0.0000</td>
<td>-13.1601</td>
<td>-21.0470</td>
<td>-26.3211</td>
</tr>
<tr>
<td></td>
<td>2.37500</td>
<td>0.0000</td>
<td>-13.1588</td>
<td>-21.0443</td>
<td>-26.3167</td>
</tr>
<tr>
<td></td>
<td>2.50000</td>
<td>0.0000</td>
<td>-13.1572</td>
<td>-21.0412</td>
<td>-26.3119</td>
</tr>
</tbody>
</table>

Y Centroids:

<table>
<thead>
<tr>
<th></th>
<th>2.00000</th>
<th>0.0000</th>
<th>0.0000</th>
<th>0.0000</th>
<th>-0.0000</th>
</tr>
</thead>
</table>
2.12500 0.0000 0.0000 0.0000 -0.0000
2.25000 0.0000 0.0000 0.0000 -0.0000
2.37500 0.0000 0.0000 0.0000 -0.0000
2.50000 0.0000 0.0000 0.0000 -0.0000

Traced Rays/Rays in Entrance Pupil:
2.00000 113/ 113 113/ 113 113/ 113 113/ 113
2.12500 113/ 113 113/ 113 113/ 113 113/ 113
2.25000 113/ 113 113/ 113 113/ 113 113/ 113
2.37500 113/ 113 113/ 113 113/ 113 113/ 113
2.50000 113/ 113 113/ 113 113/ 113 113/ 113

Configuration: 5, 230 gpm, J-Band Spectroscopy

Averaged over all wavelengths and field angles with refocus -0.04000000

Rms 80% 90% 95% diameters (microns)
11.4 13.8 17.6 20.1

X Field angles (arcmin):
0.0000 1.7400 2.7840 3.4800
Y Field angles (arcmin):
0.0000 0.0000 0.0000 0.0000

RMS Image Diameters:
1.02200 8.7 9.3 10.0 10.9
1.12350 8.5 12.8 17.3 18.6
1.22500 2.8 7.3 13.2 15.7
1.33250 7.9 6.7 8.0 8.4
1.44000 14.6 13.9 15.1 19.1

80% Encircled Energy Diameters:
1.02200 9.3 10.8 11.7 13.0
1.12350 8.3 16.5 23.0 24.6
1.22500 3.4 9.7 17.4 21.0
1.33250 9.5 7.9 9.8 9.9
1.44000 16.8 14.9 16.1 22.6

90% Encircled Energy Diameters:
1.02200 13.7 14.0 15.7 15.7
1.12350 14.8 20.3 28.4 30.1
1.22500 4.4 11.7 20.3 24.3
1.33250 10.7 9.8 13.0 13.9
1.44000 20.5 20.9 21.9 27.1

95% Encircled Energy Diameters:
1.02200 14.9 16.1 18.4 18.4
1.12350 18.2 21.8 29.5 33.4
1.22500 4.4 12.6 22.2 26.6
1.33250 13.2 11.7 14.1 16.2
1.44000 25.6 25.4 27.9 30.8

X Centroids:
1.02200 0.0000 -9.1832 -14.6836 -18.3488
1.12350 0.0000 -9.1682 -14.6585 -18.3161
1.22500 0.0000 -9.1645 -14.6522 -18.3076
1.33250 0.0000 -9.1709 -14.6626 -18.3208
1.44000 0.0000 -9.1876 -14.6898 -18.3556

Y Centroids:
1.22500 0.0563 0.0180 -0.0417 -0.0968
1.44000 18.5776 18.5512 18.5105 18.4734

Traced Rays/Rays in Entrance Pupil:
1.02200 113/ 113 113/ 113 113/ 113 113/ 113
1.12350 113/ 113 113/ 113 113/ 113 113/ 113
1.22500 113/ 113 113/ 113 113/ 113 113/ 113
1.33250 113/ 113 113/ 113 113/ 113 113/ 113
1.44000 113/ 113 113/ 113 113/ 113 113/ 113

Configuration: 6, 175 gpm, H-Band Spectroscopy

Averaged over all wavelengths and field angles with refocus 0.03000000

<table>
<thead>
<tr>
<th></th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>diameters (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>14.8</td>
<td>17.7</td>
<td>20.2</td>
<td></td>
</tr>
</tbody>
</table>

X Field angles (arcmin):
0.0000 1.7400 2.7840 3.4800

Y Field angles (arcmin):
0.0000 0.0000 0.0000 0.0000

RMS Image Diameters:
1.34000 17.0 18.9 18.9 16.4
1.47250 5.4 7.9 11.3 11.9
1.60500 11.1 6.8 5.0 5.6
1.74250 14.2 11.1 9.1 9.2
1.88000 13.4 12.9 14.5 19.2

80% Encircled Energy Diameters:
Wavelength (µm)	Encircled Energy Diameters:				
	90%	95%	X Centroids:	Y Centroids:	Traced Rays/Rays in Entrance Pupil:
	Encircled Energy Diameters:	Encircled Energy Diameters:			
1.34000	27.0	30.9	-9.1887	-18.2207	113/ 113
1.47250	7.7	12.7	-9.1743	-8.8507	113/ 113
1.60500	12.8	9.2	-9.1704	0.2197	113/ 113
1.74250	18.4	15.4	-9.1758	9.3740	113/ 113
1.88000	18.0	18.8	-9.1906	18.3160	113/ 113
1.34000	32.0	33.6	34.1	34.1	113/ 113
1.47250	10.5	13.9	20.5	10.5	113/ 113
1.60500	13.2	9.5	7.1	13.2	113/ 113
1.74250	21.7	18.0	15.3	21.7	113/ 113
1.88000	21.0	21.9	24.7	21.0	113/ 113

90% Encircled Energy Diameters:
- 1.34000: 27.0, 30.9, 31.0, 25.8
- 1.47250: 7.7, 12.7, 18.8, 20.1
- 1.60500: 12.8, 9.2, 7.0, 8.3
- 1.74250: 18.4, 15.4, 13.8, 13.0
- 1.88000: 18.0, 18.8, 20.3, 25.7

95% Encircled Energy Diameters:
- 1.34000: 32.0, 33.6, 34.1, 31.2
- 1.47250: 10.5, 13.9, 20.5, 22.3
- 1.60500: 13.2, 9.5, 7.1, 9.2
- 1.74250: 21.7, 18.0, 15.3, 15.8
- 1.88000: 21.0, 21.9, 24.7, 28.7

X Centroids:
- 1.34000: 0.0000, -9.1887, -14.6920, -18.3588
- 1.47250: 0.0000, -9.1743, -14.6681, -18.3278
- 1.60500: 0.0000, -9.1704, -14.6614, -18.3188
- 1.74250: 0.0000, -9.1758, -14.6701, -18.3298
- 1.88000: 0.0000, -9.1906, -14.6943, -18.3606

Y Centroids:
- 1.60500: 0.2197, 0.1815, 0.1221, 0.0674
- 1.88000: 18.3160, 18.2895, 18.2485, 18.2112

Traced Rays/Rays in Entrance Pupil:
- 1.34000: 113/ 113, 113/ 113, 113/ 113, 113/ 113
- 1.47250: 113/ 113, 113/ 113, 113/ 113, 113/ 113
- 1.60500: 113/ 113, 113/ 113, 113/ 113, 113/ 113
- 1.74250: 113/ 113, 113/ 113, 113/ 113, 113/ 113
- 1.88000: 113/ 113, 113/ 113, 113/ 113, 113/ 113
Configuration: 7, 130 gpm, K-Band Spectroscopy

Averaged over all wavelengths and field angles with refocus 0.01500000

<table>
<thead>
<tr>
<th></th>
<th>rms</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>diameters (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.9</td>
<td>17.1</td>
<td>20.6</td>
<td>22.8</td>
<td></td>
</tr>
</tbody>
</table>

X Field angles (arcmin):

| | 0.0000 | 1.7400 | 2.7840 | 3.4800 |

Y Field angles (arcmin):

| | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

RMS Image Diameters:

<table>
<thead>
<tr>
<th></th>
<th>1.78800</th>
<th>16.3</th>
<th>15.5</th>
<th>17.0</th>
<th>21.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.96900</td>
<td>17.0</td>
<td>13.7</td>
<td>11.4</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>2.15000</td>
<td>12.3</td>
<td>8.6</td>
<td>6.3</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>2.33500</td>
<td>7.6</td>
<td>9.7</td>
<td>11.3</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>2.50000</td>
<td>21.8</td>
<td>22.4</td>
<td>20.5</td>
<td>16.6</td>
</tr>
</tbody>
</table>

80% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th></th>
<th>1.78800</th>
<th>18.6</th>
<th>17.1</th>
<th>19.8</th>
<th>26.9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.96900</td>
<td>18.8</td>
<td>15.9</td>
<td>14.0</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>2.15000</td>
<td>14.1</td>
<td>10.9</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>2.33500</td>
<td>8.9</td>
<td>11.2</td>
<td>13.9</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>2.50000</td>
<td>27.7</td>
<td>30.2</td>
<td>27.3</td>
<td>22.2</td>
</tr>
</tbody>
</table>

90% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th></th>
<th>1.78800</th>
<th>21.3</th>
<th>22.1</th>
<th>24.4</th>
<th>30.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.96900</td>
<td>20.6</td>
<td>18.6</td>
<td>15.9</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>2.15000</td>
<td>14.6</td>
<td>12.0</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>2.33500</td>
<td>13.4</td>
<td>16.1</td>
<td>17.8</td>
<td>17.4</td>
</tr>
<tr>
<td></td>
<td>2.50000</td>
<td>36.1</td>
<td>35.3</td>
<td>33.6</td>
<td>27.0</td>
</tr>
</tbody>
</table>

95% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th></th>
<th>1.78800</th>
<th>24.0</th>
<th>25.3</th>
<th>27.4</th>
<th>33.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.96900</td>
<td>23.6</td>
<td>20.3</td>
<td>18.1</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>2.15000</td>
<td>14.6</td>
<td>12.4</td>
<td>10.5</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>2.33500</td>
<td>15.6</td>
<td>18.3</td>
<td>21.2</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td>2.50000</td>
<td>40.5</td>
<td>38.9</td>
<td>36.0</td>
<td>29.6</td>
</tr>
</tbody>
</table>

X Centroids:

<table>
<thead>
<tr>
<th></th>
<th>1.78800</th>
<th>0.0000</th>
<th>-9.1906</th>
<th>-14.6948</th>
<th>-18.3619</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.96900</td>
<td>0.0000</td>
<td>-9.1745</td>
<td>-14.6680</td>
<td>-18.3271</td>
</tr>
<tr>
<td></td>
<td>2.15000</td>
<td>0.0000</td>
<td>-9.1690</td>
<td>-14.6588</td>
<td>-18.3150</td>
</tr>
<tr>
<td></td>
<td>2.33500</td>
<td>0.0000</td>
<td>-9.1732</td>
<td>-14.6653</td>
<td>-18.3231</td>
</tr>
<tr>
<td></td>
<td>2.50000</td>
<td>0.0000</td>
<td>-9.1848</td>
<td>-14.6842</td>
<td>-18.3470</td>
</tr>
</tbody>
</table>

Y Centroids:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.15000</td>
<td>0.3924</td>
<td>0.3545</td>
<td>0.2956</td>
<td>0.2413</td>
</tr>
</tbody>
</table>
Configuration: 8, 94 gpm, JH-Band Spectroscopy

Averaged over all wavelengths and field angles with refocus 0.00000000

<table>
<thead>
<tr>
<th>Diameter (microns)</th>
<th>rms</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.4</td>
<td>20.7</td>
<td>25.1</td>
<td>27.8</td>
</tr>
</tbody>
</table>

X Field angles (arcmin):

<table>
<thead>
<tr>
<th>Field Angle</th>
<th>X Field Angle (arcmin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.7400</td>
<td>1.7400</td>
</tr>
<tr>
<td>2.7840</td>
<td>2.7840</td>
</tr>
<tr>
<td>3.4800</td>
<td>3.4800</td>
</tr>
</tbody>
</table>

Y Field angles (arcmin):

<table>
<thead>
<tr>
<th>Field Angle</th>
<th>Y Field Angle (arcmin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

RMS Image Diameters:

<table>
<thead>
<tr>
<th>Diameter (microns)</th>
<th>0.90000</th>
<th>1.10000</th>
<th>1.41000</th>
<th>1.73500</th>
<th>2.06000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24.8</td>
<td>16.4</td>
<td>5.3</td>
<td>21.1</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>22.0</td>
<td>21.3</td>
<td>3.8</td>
<td>17.6</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>26.1</td>
<td>8.0</td>
<td>14.9</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>21.2</td>
<td>27.4</td>
<td>10.0</td>
<td>15.0</td>
<td>23.3</td>
</tr>
</tbody>
</table>

80% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th>Diameter (microns)</th>
<th>0.90000</th>
<th>1.10000</th>
<th>1.41000</th>
<th>1.73500</th>
<th>2.06000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30.2</td>
<td>18.0</td>
<td>7.0</td>
<td>23.8</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td>24.3</td>
<td>27.8</td>
<td>5.0</td>
<td>19.9</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>21.7</td>
<td>34.1</td>
<td>10.8</td>
<td>16.8</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td>23.9</td>
<td>35.4</td>
<td>13.7</td>
<td>16.9</td>
<td>28.2</td>
</tr>
</tbody>
</table>

90% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th>Diameter (microns)</th>
<th>0.90000</th>
<th>1.10000</th>
<th>1.41000</th>
<th>1.73500</th>
<th>2.06000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34.4</td>
<td>26.1</td>
<td>7.3</td>
<td>27.5</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>31.9</td>
<td>31.1</td>
<td>5.5</td>
<td>23.3</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>29.9</td>
<td>40.5</td>
<td>13.9</td>
<td>21.3</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td>30.1</td>
<td>41.4</td>
<td>17.2</td>
<td>21.6</td>
<td>31.5</td>
</tr>
</tbody>
</table>

95% Encircled Energy Diameters:

<table>
<thead>
<tr>
<th>Diameter (microns)</th>
<th>0.90000</th>
<th>1.10000</th>
<th>1.41000</th>
<th>1.73500</th>
<th>2.06000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37.7</td>
<td>29.2</td>
<td>7.4</td>
<td>31.1</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>36.8</td>
<td>33.3</td>
<td>5.7</td>
<td>26.4</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>36.4</td>
<td>41.8</td>
<td>14.3</td>
<td>24.4</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td>36.5</td>
<td>45.9</td>
<td>17.5</td>
<td>24.2</td>
<td>31.5</td>
</tr>
</tbody>
</table>
Configuration: 9, 80 gpm, HK-Band Spectroscopy

Averaged over all wavelengths and field angles with refocus 0.00000000

rms 80% 90% 95% diameters (microns)
15.2 18.7 22.3 25.1

X Field angles (arcmin):
0.0000 1.7400 2.7840 3.4800

Y Field angles (arcmin):
0.0000 0.0000 0.0000 0.0000

RMS Image Diameters:
1.17500 21.8 23.5 23.2 20.1
1.54250 12.9 9.7 7.8 7.7
1.91000 23.9 19.4 15.3 14.4
2.27000 8.4 7.1 7.0 7.1
2.50000 18.5 20.0 19.5 16.5

80% Encircled Energy Diameters:
1.17500 27.3 30.9 30.6 26.9
1.54250 14.4 11.6 9.4 9.6
1.91000 26.6 21.2 17.6 16.4
<table>
<thead>
<tr>
<th></th>
<th>2.27000</th>
<th>2.50000</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% Encircled Energy Diameters:</td>
<td>10.6</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>8.7</td>
</tr>
<tr>
<td>95% Encircled Energy Diameters:</td>
<td>22.1</td>
<td>26.3</td>
</tr>
<tr>
<td></td>
<td>25.3</td>
<td>21.0</td>
</tr>
<tr>
<td>X Centroids:</td>
<td>-9.1864</td>
<td>-9.1740</td>
</tr>
<tr>
<td></td>
<td>-14.6884</td>
<td>-14.6674</td>
</tr>
<tr>
<td></td>
<td>-18.3545</td>
<td>-18.3269</td>
</tr>
<tr>
<td>Y Centroids:</td>
<td>-18.6093</td>
<td>-9.1893</td>
</tr>
<tr>
<td></td>
<td>-18.6375</td>
<td>-9.2113</td>
</tr>
<tr>
<td></td>
<td>-18.6817</td>
<td>-9.2458</td>
</tr>
<tr>
<td>Traced Rays/Rays in Entrance Pupil:</td>
<td>143/113</td>
<td>113/113</td>
</tr>
<tr>
<td></td>
<td>113/113</td>
<td>113/113</td>
</tr>
<tr>
<td></td>
<td>113/113</td>
<td>113/113</td>
</tr>
</tbody>
</table>
5 Layout

Figure 1. Layout of Preconstruction Design

6 Polychromatic Imaging Mode Spots

Figure 2. Polychromatic Spots (0.9-2.5 µm)
7 Matrix Imaging Spots

Figure 3. Matrix Imaging Spots.
MMIRS Optical Specifications

Paul Martini
April 28, 2005

100 Overview

This document describes the optical specifications for the MMIRS instrument, and in particular the image quality requirements outlined in section 120 of the MMIRS Functional and Performance Requirements (F&P; S-MMIRS-200). The F&P is the instrument’s controlling document, so if there are any discrepancies between this document and the F&P, the F&P shall prevail.

The image quality requirements stated in the F&P are <20 microns FWHM in the slit plane (F&P section 121) and <28 microns FWHM at the detector, whether in imaging mode (section 122) or spectroscopic mode (section 123). These image quality requirements set the total allowable error budget for the MMIRS optics. This error budget includes lens fabrication errors, mechanical errors due to misalignments in the lens mounts, image motion due to systematic lens misalignments, and the impact of temperature gradients. This document calculates the fabrication and mechanical tolerances in detail, as well as several particular flexure and thermal scenarios, and the requirements for mounting the instrument on the telescope. The main result of this analysis is that the specifications outlined here will meet the image quality requirements of the F&P with ample contingency.

Below is a diagram of the optical layout with labels of the surfaces (4-34), lenses (L1-L14) and several groups of lenses (G1-G6). These labels are used throughout this document.
Note that this document does not include the GWFS or the grisms, which are described separately.

200 Tolerance Analysis

The two relevant quantities for the tolerance analysis are the image quality at the slit plane and at the detector. The image quality at the slit plane is important for the spectroscopic mode as this determines the fraction of the light from an unresolved source that passes through the slit. This image quality is determined by the first two optical elements, which will also be referred to as the Corrector. The image quality at the detector is important for both the imaging and spectroscopic modes. This analysis is based on the design presented in the document “MMIRS Preconstruction Design rev a” by D. Fabricant. While this is not the final design, the differences in the error budget between this and the final design are expected to be negligible.

210 Figure of Merit

The optical design produces images with an rms spot radius of 10.5 microns or better over the full science field of view at the detector, an rms spot radius of 4.5 microns or better over the full science field at the slit plane, and an rms spot radius of 10.5 microns or better for the guider/wavefront sensor field.

220 Tolerance Parameters

As noted above, the image quality produced by the ‘as built’ design will be degraded by both lens fabrication and mechanical errors. The 4-letter ZEMAX codes for each potential error source are:

Lens fabrication tolerances:
- TRAD: Surface radius (in lens units)
- TFRN: Radius in fringes for flat or nearly flat surfaces
- TTHI: Lens thickness
- TSD(X,Y): Surface decenter
- TST(X,Y): Surface tilt
- TIRR: Surface irregularity

Mechanical tolerances:
- TTHI: Element airspace
- TED(X,Y): Element decenter
- TET(X,Y): Element tilt

The mechanical tolerance parameters were used to both tolerance individual elements and groups of elements.

230 Description of Tolerance Calculations

The error budget was calculated with the tolerancing tools in ZEMAX. This implementation requires initial estimates of the uncertainties for each parameter, which were obtained from the typical performance quoted by optics manufacturers, input from the project engineers, the Flamingos-2 CDR package, and the requirements for the PANIC near-infrared camera. The impact of these initial tolerance estimates were then iteratively rebalanced after measurement of the impact of each parameter on the image quality (using the Inverse Limit option in the Tolerance Tool) with the requirement that no one parameter degrade the image quality more than approximately 5%. A series of Monte Carlo simulations were then run and the error budget was further rebalanced until the required image quality was obtained in...
at least 90% of the simulations. The following three sections present the tolerance parameters from this analysis and are followed by the error budget.

240 Lens Fabrication Tolerances

The table below specifies the manufacturing requirements for the radii, thicknesses, surface tilts, and surface irregularities for the optical elements. These values are used to generate the lens fabrication specifications for the optics package, which are summarized below in section 600.

<table>
<thead>
<tr>
<th>Surface</th>
<th>TRAD/TFRN [% or fringes]</th>
<th>TTHI [mm]</th>
<th>TSTY/Y [mrad]</th>
<th>TIRR [fringes]</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L1</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L2</td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L3</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L4</td>
</tr>
<tr>
<td>12</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L5, Flat</td>
</tr>
<tr>
<td>14</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L6</td>
</tr>
<tr>
<td>16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L7, Flat</td>
</tr>
<tr>
<td>18</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L8</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L9</td>
</tr>
<tr>
<td>23</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L10</td>
</tr>
<tr>
<td>25</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L11</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>Flat</td>
</tr>
<tr>
<td>28</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L12</td>
</tr>
<tr>
<td>29</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L13</td>
</tr>
<tr>
<td>31</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td>L14</td>
</tr>
<tr>
<td>33</td>
<td>0.1</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

250 Mechanical Tolerances for Lens Mounts

The following table lists the maximum allowed decenters, tilts, and lens spaces for lenses L1-L14. For the lens spaces, the requirement is on the space between the lens in a given row of the table and the next lens in the optical path.
Table 2: Mechanical Tolerances

<table>
<thead>
<tr>
<th>Element</th>
<th>Decenter (mm)</th>
<th>Tilt (mrad)</th>
<th>Tilt (degrees)</th>
<th>Space (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1*</td>
<td>0.05</td>
<td>0.2</td>
<td>0.01146</td>
<td>0.05</td>
</tr>
<tr>
<td>L2*</td>
<td>0.05</td>
<td>0.2</td>
<td>0.01146</td>
<td>0.05</td>
</tr>
<tr>
<td>L3</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L4</td>
<td>0.05</td>
<td>0.11**</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L5</td>
<td>0.05</td>
<td>0.12**</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L6</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L7</td>
<td>0.05</td>
<td>0.11**</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L8</td>
<td>0.05</td>
<td>0.11**</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L9</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L10</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L11</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L12</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L13</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
<td>0.05</td>
</tr>
<tr>
<td>L14</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
<td>(focus)</td>
</tr>
</tbody>
</table>

*Note that the tolerance on L1 and L2 are actually set by the image quality at the slit plane, rather than the detector.

**These tolerances were loosened slightly to accommodate the lens mount design. This loosening had a negligible (<2%) impact on the total error budget.

260 Mechanical Tolerances for Lens Groups

Several groups of elements were also defined to mimic the effect of systematic misalignments in the instrument. G1 describes an offset of the MOS section relative to the rest of the Camera Section, G5 is the first VEE block, G6 is the second VEE block, G5+G6 is the entire Camera Section, and G2-G4 describe individual lens groups within the VEE blocks.

Table 3: Lens Group Tolerances

<table>
<thead>
<tr>
<th>Group</th>
<th>Decenter (mm)</th>
<th>Tilt (mrad)</th>
<th>Tilt (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 (MOS Section)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.00573</td>
</tr>
<tr>
<td>G2</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
</tr>
<tr>
<td>G3</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
</tr>
<tr>
<td>G4</td>
<td>0.05</td>
<td>0.1</td>
<td>0.00573</td>
</tr>
<tr>
<td>G5 (VEE Block 1)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.00573</td>
</tr>
<tr>
<td>G6 (VEE Block 2)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.00573</td>
</tr>
<tr>
<td>G5+G6 (Camera Section)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.00573</td>
</tr>
</tbody>
</table>

Note that the image quality is substantially less sensitive to pure deceters between the MOS and Camera sections, as well as between the camera and collimator lens groups.

270 Redistribution of Lens Fabrication and Mechanical Errors

The physical parameters of lenses can be measured much more precisely than they can be specified prior to fabrication. For example, the radius of curvature is typically specified to approximately 0.1%, yet
interferometric techniques can measure the radius to a fringe or better. This substantially higher measurement precision can be exploited to reduce the contribution of fabrication tolerances to the error budget through use of a pickup surface and/or a fine-tuning of the element airspaces and a focus adjustment. In particular, radii can be measured to better than 0.05% and lens thicknesses can be measured to better than 0.01mm.

The potential gain from this approach was estimated by running 20 Monte-Carlo simulations with the fabrications errors tabulated above, choosing the worst case, and reoptimizing the airspaces in the design. This yielded an rms spot radius less than 5% greater than the original value. Subsequent tolerance simulations to investigate mechanical errors adopted errors on the radii and element thicknesses of 0.01% and 0.01mm, respectively.

280 Error Budget Summary
The following table summarizes the contribution of the main sources of error described above. All of these error estimates are based on Monte Carlo simulations with ZEMAX and reflect the image quality performance of better than 90% of all realizations.

When interpreting the individual error sources in the table below, it is important to note that the errors are NOT independent, and therefore a summation of all individual sources of error will underestimate the final uncertainty.

Table 4: Error Budget Summary

<table>
<thead>
<tr>
<th>Source</th>
<th>RMS Image Quality [microns radius]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>9.3</td>
</tr>
<tr>
<td>Lenses [As Specified]</td>
<td>11.1</td>
</tr>
<tr>
<td>Lenses [As Fabricated, after Optimization]</td>
<td>9.3</td>
</tr>
<tr>
<td>Lens Mounts</td>
<td>10.8</td>
</tr>
<tr>
<td>Airspaces</td>
<td>9.3</td>
</tr>
<tr>
<td>Element Group Misalignments</td>
<td>9.6</td>
</tr>
<tr>
<td>All</td>
<td>12.4</td>
</tr>
<tr>
<td>Requirement</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Some additional potential sources of error are discussed in the next section.

300 Mechanical Case Studies
The following sections describe calculations for particular scenarios that may not have been completely addressed with the Monte Carlo simulations described above. In several cases this is because the proper compensator is a telescope refocus, rather than an instrument refocus.

310 Tolerance on L1-L2 spacing
The L1-L2 spacing uncertainty shall be less than +/-0.5mm. This tolerance specifically addresses uncertainty in the final seating of L1 on its O-ring seal. Note that the quoted uncertainty can be corrected with a telescope refocus.
320 Misalignment of Camera and MOS Sections
The alignment of the camera section (the entire optical bench) relative to the MOS section was modeled by insertion of a coordinate break before L3. To keep image degradation less than 5%, the alignment of the Camera Section (including the detector) relative to the MOS must have a decenter less than 1mm and a tilt of less than 0.1mrad. A shift of the optical bench parallel to the optical axis can be removed by adjusting focus. The refocus scales linearly with the amount of shift along the z-axis, where 1mm of shift results in a focus change of 0.28mm. The optical bench should be placed in the correct position along the optical bench to within 1mm.

330 Systematic Errors in Lens Thickness
The lens manufacturers are likely to produce lenses that are systematically larger than the requested value, even if they fall within the requested range, and this scenario is not properly accounted for by the Monte Carlo simulations. This case was therefore explicitly addressed by increasing the thickness of each lens to the maximum value of the allowed range. Provided the lens thicknesses are known, this systematic error can be completely accounted for by simply reducing the airspaces between the lenses by the corresponding amount.

340 Pupil Misalignment and Shimming the Instrument
The pupil radius is 53mm in radius and the collimator focal length is 500mm. A shift of 0.5mm in the pupil position can thus be achieved with a tilt of 0.06 degrees. Instrument tilt does not significantly begin to degrade image quality until 0.06 degrees, corresponding to 5% degradation at the edge of the field. A tilt of 0.12 degrees corresponds to 10% degradation (and 1mm pupil shift). To insure that shimming the instrument does not significantly degrade image quality, the tilt should be kept to less than 0.06 degrees, which requires pupil placement with to better than 1mm. Note that image degradation quoted here was calculated after a refocus. We do not expect to need to shim the instrument since this tolerance should be easy to achieve.

350 Note on Flexure
Flexure in the optical system was considered separately with the Binosens software package, which combines information about the optical design with a finite element analysis. This analysis is described elsewhere in a series of memos by H. Bergner.

400 Telescope Mounting Specifications
This section specifically addresses the precision with which the instrument shall be mounted on the telescope and therefore is relevant to the design of the telescope mounting truss. The three particular specifications considered here are the degree to which the instrument must be aligned with respect to the optical axis of the telescope, the maximum allowed instrument tilt relative to the telescope axis, and the allowable offset of the instrument along the optical axis relative to the nominal focus position. These quantities were estimated by treating the instrument as a solid body and the tilts and decenters were applied to a point 600mm behind the front surface of L1, which is approximately where the truss is attached.

410 Tilt relative to the Telescope’s Optical Axis
The tilt of the entire instrument relative to the optical axis of the telescope shall be less than 0.05 degrees.
420 Centration relative to the Telescope’s Optical Axis
The instrument shall be centered on the optical axis of the telescope to less than +/-0.5mm.

430 Offset along Telescope’s Optical Axis
The instrument shall be positioned at the nominal focus position along the optical axis with an uncertainty of less than +/-1mm. Note that a placement error of less than 1mm along the optical axis can be corrected with a telescope refocus. Spherical aberration begins to be significant for larger offsets.

The instrument shall maintain this fixed position in the z-direction to +/- 0.05mm for an elevation change of 30 degrees or less at any fixed rotator angle.

500 Temperature Case Studies
The thermal models indicate that several degree temperature gradients may be present. The primary effect of these temperature gradients is on the airspaces between lenses, although thermal gradients will also have an impact on surface curvature and refractive index. Here the temperature gradients are assumed to adjust the element spaces relative to those expected for a uniform optical bench. The CTE of Al-6061 has been assumed to be 18e-6/K, although at cryogenic temperatures the value is closer to 6e-6/K. The estimates below are thus likely to be strong upper limits and neither of the cases considered below affect the image quality.

510 Temperature Gradient between L3 and L4
L3 and its mount is likely to be warmer than the other elements because it is the first element in the camera dewar and it has the longest conductive path to the LN2 reservoir. The distance between L3 and L4 is 151mm. A 5K gradient corresponds to a change of 9e-5 or an increase in the separation of approximately 0.01mm. This does not affect image quality.

520 10K temperature gradient between L3 and L8
This case considers a temperature gradient from L3 through the end of the collimator VEE block and is intended to mimic instrument behavior as the cryogen is depleted. This temperature gradient was input into ZEMAX by distributing the increased distances among all of the airspaces from L3 to L8 according to the size of the separation. This larger temperature gradient similarly did not affect image quality.

530 Impact of Temperature Gradients on Index Data and Surface Curvature
A preliminary analysis indicates that a 3K temperature change degrades the image quality by 10%. A more detailed analysis of how temperature gradients affect image quality will be done before the final optimization of the optical design.

600 Requirements for Optics Bid Package
This section describes the fabrication requirements for the optical elements that are to be included in the Optics Bid Package.

610 Parameters for all surfaces
The following sections provide an overview of the terms used in the fabrication specifications.
611 Material
The glass for the lens shall be clearly specified. In cases where there are multiple grades of a given material, the grade must also be noted. A recommended vendor for the raw material may also be specified. SAO will supply the raw material for the S-FTM16 lenses.

612 Reference Wavelength
The reference wavelength for interferometric tests shall be specified on each drawing. The reference wavelength is 6328 Angstroms.

613 Center Thickness Tolerance
This is the thickness of the lens at the center of curvature of each surface and shall be met to within 0.05mm. The manufacturer shall measure and report the thickness of the lens to 0.01mm.

614 Surface Quality
Surface quality shall be in compliance with MIL-O-13830A. Spherical surfaces and the aspheric surface shall have a scratch/dig of 40-20. All other surfaces shall have a scratch-dig of 80-50.

615 Surface Figure
Surface finish is a tolerance on small-scale irregularities. This shall be specified in terms of Angstroms rms measured within a fixed aperture. The spherical surfaces shall not depart from a purely spherical shape by more than 0.5 fringes over the entire clear aperture.

616 Radius of Curvature Tolerance
The tolerance on the radius of curvature is a measure of the deviation from the specified sagittal power. The radius of curvature must be measured in a temperature-controlled environment at a temperature of 20+/-1 C. The radius of curvature tolerance will be specified in units of radius (mm). The formula to convert a dimensional radius tolerance to a tolerance in fringes is:

\[
N = \frac{2\Delta R}{\lambda} \left[1 - \sqrt{1 - \left(\frac{\phi}{2R} \right)^2} \right]
\]

where \(N \) is the number of fringes, \(\Delta R \) is the dimensional radius tolerance, \(\lambda \) is the reference wavelength, \(\phi \) is the diameter of the clear aperture, and \(R \) is the radius of curvature. This equation can be approximated by

\[
N \approx \frac{\Delta R \phi^2}{4\lambda R^2}
\]

for the case where \(\phi/R \) is small.

The radius of curvature must be within 0.1% of the specified radius value and reported to within 1 fringe or better. This measurement shall be performed in a temperature-controlled environment between 20-25 C and the temperature at the time of measurement shall be reported to 0.5 C.

617 Centration or Lens Thickness Runout or Edge Thickness Difference
The centration of the surfaces on the lens shall be expressed in terms of either the lens thickness runout or the edge thickness differences. The edge thickness difference is the difference between the maximum and minimum thickness of the lens measured at the radius of the clear aperture. The edge thickness difference
(ETD) is related to surface tilt (TSTX/Y) by the equation: TSTX(Y)=ETD/φ. The edge thickness difference is a measure of either surface tilt or decenter for spherical surfaces.

618 Diameter of lens
The diameter of the lens shall be within 0.1mm of the specified value and the manufactured diameter shall be measured with a precision of 0.01mm.

620 Additional Specifications for Aspheric Surface
Slope errors on the aspheric surface shall be less than 0.00001 radians on all scales up to the clear aperture diameter. The aspheric surface error shall be less than 0.5 fringes over the entire clear aperture diameter. The aspheric surface shall be measured with a CGH.

630 Specifications for Coatings
The coatings specifications are summarized in the document MMIRS-S-207.
MMIRS Ghost Analysis

Paul Martini
October 22, 2004

100 Overview
This document describes a ghost analysis of the MMIRS preconstruction design, which is described in “MMIRS_Preconstruction_Design_rev_a.pdf” by D. Fabricant. This document is in reference to the Ghost Image and Pupil requirements of the MMIRS Functional and Performance Requirements, in particular sections 144 and 145.

For every potential double-bounce reflection in the instrument, the ZEMAX Ghost Focus Generator was used to determine the distance of the ghost focus and ghost pupil from the image plane. The separation of each ghost focus and ghost pupil from the image plane was calculated with both the output distance from ZEMAX and the effective f/# of the double bounce system. Below I summarize the worst ghost foci and ghost pupils and attach accompanying figures of the ZEMAX files for several cases. The result of this analysis is that none of these ghosts are significant.

200 Ghost Focii
Several of the worst case ghost foci are:

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>F/#</th>
<th>RMS [mm]</th>
<th>Distance [mm]</th>
<th>D/(F/#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>4</td>
<td>2.48</td>
<td>6.78</td>
<td>-5.76</td>
<td>-2.32</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>7.45</td>
<td>1.23</td>
<td>17.73</td>
<td>2.38</td>
</tr>
<tr>
<td>27</td>
<td>13</td>
<td>5.19</td>
<td>4.18</td>
<td>-18.44</td>
<td>-3.55</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>2.29</td>
<td>1.89</td>
<td>-15.49</td>
<td>-6.75</td>
</tr>
</tbody>
</table>

All of these double-bounce reflections produce ghosts greater than 2mm in diameter and most only produce these images on axis. Spot diagrams for reflections 17-4 and 25-11 are presented in Figures 1 and 2. The intensities of both of these ghost images are below 10^{-6} of the original image.

300 Ghost Pupils
Several of the worst case ghost pupils are:

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>F/#</th>
<th>RMS [mm]</th>
<th>Distance [mm]</th>
<th>D/(F/#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>32</td>
<td>1240.5</td>
<td>2.65</td>
<td>-49.23</td>
<td>-0.04</td>
</tr>
<tr>
<td>30</td>
<td>13</td>
<td>770.64</td>
<td>5.21</td>
<td>-311.05</td>
<td>-0.40</td>
</tr>
<tr>
<td>33</td>
<td>25</td>
<td>106.51</td>
<td>9.03</td>
<td>73.89</td>
<td>0.69</td>
</tr>
<tr>
<td>29</td>
<td>17</td>
<td>1.23</td>
<td>26.7</td>
<td>-1.61</td>
<td>-1.31</td>
</tr>
</tbody>
</table>

None of these reflections produce significant ghost pupils. Ray diagrams and the relative illumination plots are shown for reflections 33-32 and 30-13 in Figures 3 and 4.
Figure 1: Ghost Image produced by double-bounce reflection off surface 17 and then off surface 4.

Figure 2: Ghost Image produced by double-bounce reflection off surface 25 and then off surface 11. This ghost is only important on-axis. Rays more than 2 arcminutes off axis are vignette.
Figure 3: Ray diagram (left) and relative illumination (right) for a ghost reflection off surfaces 33 and then 32. The ray diagram includes lenses 13 and 14.

Figure 4: Ray diagram (left) and relative illumination (right) for a ghost reflection off surfaces 30 and then 13. The ray diagram includes lenses 5 and 14.
MMIRS Throughput Calculation

Paul Martini
April 26, 2005

Overview
This document describes the throughput of the MMIRS instrument in relation to section 160 of the MMIRS Functional and Performance Requirements (F&PR; S-MMIRS-200). The F&PR is the instrument’s controlling document, so if there are any discrepancies between this document and the F&PR, the F&PR shall prevail. The throughput requirements are >50% throughput in imaging mode (goal 70%) and >30% in spectroscopic mode (goal 40%). These requirements are for the instrument’s optical elements alone and do not include the atmosphere, telescope, or detector.

Imaging Mode
In imaging mode there are 14 single lenses (28 surfaces) and a filter. For 1% coatings on these 28 surfaces and 90% throughput for a filter the total throughput is 68%. The throughput is 51.1% for 2% coatings. An average coating of 2% or better will therefore meet the requirement and an average of 1% or better will meet the goal.

Spectroscopic Mode
In spectroscopic mode there is an additional surface on the grism (31 surfaces) and additional losses in the grating. For an assumed grating loss of 25% and 1% coatings the throughput is 50.4% and 37.6% for 2% coatings.
MMIRS-S-207
Coating Specifications

Version 2005.03.03

Overview: The MMIRS instrument contains 19 optical elements comprised of 14 lenses and 5 prisms in two, interconnected vacuum dewars. Lens 1 is the window of one dewar and its first surface faces ambient atmospheric conditions. Lens 2 operates inside the same dewar and will operate at a temperature approximately 10° C below ambient. Lenses 3 through 14 and the 5 prisms are in the second vacuum dewar and operate at a temperature of approximately -196° C. Each of these 19 optical elements is listed below, along with the reference drawing number, material, wavelength ranges of operation, and the maximum incidence angle of rays relative to the surface normal.

<table>
<thead>
<tr>
<th>Element</th>
<th>Drawing</th>
<th>Material</th>
<th>Wavelength Ranges</th>
<th>Max Incidence (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>MMIRS-1001</td>
<td>CaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>MMIRS-1002</td>
<td>CaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>MMIRS-1003</td>
<td>CaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>MMIRS-1004</td>
<td>CaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>MMIRS-1005</td>
<td>BaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>MMIRS-1006</td>
<td>ZnSe</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>7</td>
<td>MMIRS-1007</td>
<td>FQTZ</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>MMIRS-1008</td>
<td>CaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>9</td>
<td>MMIRS-1009</td>
<td>CaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>MMIRS-1010</td>
<td>S-FTM16</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>11</td>
<td>MMIRS-1011</td>
<td>CaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>12</td>
<td>MMIRS-1012</td>
<td>BaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>13</td>
<td>MMIRS-1013</td>
<td>CaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>14</td>
<td>MMIRS-1014</td>
<td>S-FTM16</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>P41-1</td>
<td>MMIRS-1015</td>
<td>CaF2</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>P41-2</td>
<td>MMIRS-1015</td>
<td>CaF2</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>P41-3</td>
<td>MMIRS-1015</td>
<td>CaF2</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>P21</td>
<td>MMIRS-1016</td>
<td>CaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>P18</td>
<td>MMIRS-1017</td>
<td>CaF2</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

1. Lens Reflectivity Requirement: The mean reflectivity requirements are specified separately for four wavelength ranges:
 - **Range 1:** 500-900nm, 5%
 - **Range 2:** 900-1250nm, 0.5%
 - **Range 3:** 1400-1800nm, 0.5%
 - **Range 4:** 1950-2350nm, 0.5%
The peak reflectivity shall be less than 1.0 % in wavelength ranges 2-4 and the spatial uniformity of the coatings shall be better than 0.2% rms. These specifications are for the average of the S and P polarizations.

2. **Angle of Incidence Requirement:** All coatings shall meet the reflectivity requirement for incidence angles up to the value provided in the Table. These incidence angles are relative to the surface normal.

3. **Operational Pressure:** All coatings shall meet the performance requirements at both atmospheric pressure and in vacuum.

4. **Operational Temperature:** The coatings on lenses 1 and 2 shall meet the performance requirements over the temperature range -20° to +40° C. The coatings on lenses 3 through 14 and the prisms shall meet the performance requirements over the temperature range from -200° to +40° C.

5. **Radioactivity:** The coatings shall not employ radioactive materials

6. **Durability:**

 - **Cleaning:** The coatings shall survive without damage 20 brief (ten minute or less), gentle cleanings with a cotton swab wetted with ethyl alcohol, isopropyl alcohol, acetone, or a mild detergent solution.
 - **Condensation:** The coatings shall survive without damage 10 brief (twenty minute or less) incidents of water condensation, such as produced by material temperatures below the ambient dew point.
 - **Thermal and pressure cycling of lenses 1 and 2:** The coatings shall survive without damage daily cycling between temperatures of -20° and +40° C and pressures between vacuum and atmospheric for a period of ten years.
 - **Thermal and pressure cycling of lenses 3 through 14 and prisms:** The coatings shall survive without damage for 100 cycles between temperatures of -200° and +40° C and pressures between vacuum and atmospheric over a period of ten years.

7. **Testing:**

 - **Reflectivity:** The reflectivity of each surface over its operational wavelength range shall be measured and reported to SAO. Witness samples of each material at normal and the maximum angles reported in the Table for the respective material shall be coated and measured. Witness sample material (including S-FTM16) shall be provided by the vendor.
 - **Durability:** The witness samples shall be exposed to ten chemical cleanings with a cotton swab and thermally cycled between approximately -196° and 20° C. The reflectivity of the coatings over the operational wavelength range shall then be measured and reported to SAO.
MMIRS Grism Design
Brian McLeod 28 April 2006

Wavelength Coverage

MMIRS will have five grisms. Three will provide R=3000 coverage of each of the J, H, and K windows. The fourth will cover J+H simultaneously and the fifth, H+K simultaneously, each at a resolution of 1300. The spectrum will map onto 1400 pixels of the 2048 pixel detector. This allows for a 2 arcminute wide strip of the sky to receive full spatial coverage: (2048-1400)*0.2”/pix = 130”. The slit mask plates will be 4 arcminutes wide, allowing for additional spatial coverage with incomplete spectral coverage. The exit angle from the grism that corresponds to +/-700 pixels is +/-2.60 degrees

The wavelength ranges to be covered were specified in the initial MMIRS proposal as

Table 1 (from MMIRS proposal)

<table>
<thead>
<tr>
<th>Grism</th>
<th>Wavelength Range</th>
<th>Grooves/mm</th>
<th>Prism Angle</th>
<th>Facet Angle</th>
<th>Resolution (2 pixel slit)</th>
<th>Theoretical Efficiency across band</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>1.11-1.39</td>
<td>230</td>
<td>41°</td>
<td>32°</td>
<td>3000</td>
<td>64-70%</td>
</tr>
<tr>
<td>H</td>
<td>1.45-1.82</td>
<td>175</td>
<td>41°</td>
<td>32°</td>
<td>3000</td>
<td>64-70%</td>
</tr>
<tr>
<td>K</td>
<td>1.95-2.45</td>
<td>130</td>
<td>41°</td>
<td>32°</td>
<td>3000</td>
<td>64-70%</td>
</tr>
<tr>
<td>JH</td>
<td>0.95-1.82</td>
<td>94</td>
<td>18°</td>
<td>14°</td>
<td>1300</td>
<td>55-80%</td>
</tr>
<tr>
<td>HK</td>
<td>1.45-2.45</td>
<td>80</td>
<td>21°</td>
<td>17°</td>
<td>1300</td>
<td>55-80%</td>
</tr>
</tbody>
</table>

In Table 2, I have substituted the values for the Flamingos2 JH and HK gratings and recomputed the wavelength ranges using the current optical prescription, assuming a CaF2 prism (n=1.43). The wavelength ranges are shown graphically in Figure 1.

Table 2

<table>
<thead>
<tr>
<th>Grism</th>
<th>Grooves/mm</th>
<th>Prism Angle</th>
<th>Resolution (2 pixel slit)</th>
<th>Wavelength at -2.6 deg</th>
<th>Straight through wavelength</th>
<th>Wavelength at +2.6 deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>230</td>
<td>41°</td>
<td>3000</td>
<td>1.08</td>
<td>1.23</td>
<td>1.38</td>
</tr>
<tr>
<td>H</td>
<td>175</td>
<td>41°</td>
<td>3000</td>
<td>1.42</td>
<td>1.61</td>
<td>1.81</td>
</tr>
<tr>
<td>K</td>
<td>130</td>
<td>41°</td>
<td>3000</td>
<td>1.91</td>
<td>2.17</td>
<td>2.44</td>
</tr>
<tr>
<td>JH</td>
<td>98.264</td>
<td>18°</td>
<td>1300</td>
<td>0.92</td>
<td>1.35</td>
<td>1.79</td>
</tr>
<tr>
<td>HK</td>
<td>81.571</td>
<td>21°</td>
<td>1300</td>
<td>1.38</td>
<td>1.89</td>
<td>2.41</td>
</tr>
</tbody>
</table>
Figure 1. The range of wavelengths falling on the 2048 pixel wide detector is shown for each of 5 field angles (-2',-1',on-axis,+1',+2'). The vertical axis is in arcmin, the horizontal is wavelength in microns. The atmospheric transmission is shown for reference.

Grating Efficiency

In this section I show plots of theoretical grating efficiency computed with PCGrate2000MLT. I have assumed that the resin index is 1.53. The grating parameters are summarized in the Table 3. Note that the incident angle differs from the prism angle due to refraction when passing from the prism into the resin.

Table 3. (Note: as of this writing I am unsure of the Facet Angle actually being used in the Flamingos2 JH and HK grisms. The numbers in the table are my optimization.)

<table>
<thead>
<tr>
<th>Grism</th>
<th>Grooves/mm</th>
<th>Prism Angle</th>
<th>Incident Angle</th>
<th>Facet Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>230</td>
<td>41°</td>
<td>38°</td>
<td>32°</td>
</tr>
<tr>
<td>H</td>
<td>175</td>
<td>41°</td>
<td>38°</td>
<td>32°</td>
</tr>
<tr>
<td>K</td>
<td>130</td>
<td>41°</td>
<td>38°</td>
<td>32°</td>
</tr>
<tr>
<td>JH</td>
<td>98.264</td>
<td>18°</td>
<td>17°</td>
<td>?? 14°</td>
</tr>
<tr>
<td>HK</td>
<td>81.571</td>
<td>21°</td>
<td>19°</td>
<td>?? 17°</td>
</tr>
</tbody>
</table>
Figure 2. J grating efficiency. The top curve (red) is the total power in all orders (nominally 100%). The curve of interest is the second from the top (blue), representing 1st order.

Figure 3. H grating efficiency. The top curve (red) is the total power in all orders (nominally 100%). The curve of interest is the second from the top (blue), representing 1st order.
Figure 4. K grating efficiency. The top curve (red) is the total power in all orders (nominally 100%). The curve of interest is the second from the top (blue), representing 1st order.

Figure 5. JH grating efficiency. The top curve (red) is the total power in all orders (nominally 100%). The curve of interest is the second from the top (blue), representing 1st order.
Figure 6 HK Grating efficiency. The top curve (red) is the total power in all orders (nominally 100%). The curve of interest is the second from the top (blue), representing 1st order.

A single grating for J, H, and K at R=3000?

For comparison we plot the efficiency of using a single grating at R=3000 in orders 4, 3 and 2 to get spectra at J, H, and K. While the peak transmission is slightly higher than using the gratings in first order as shown above, the transmission falls off fairly rapidly with wavelength and so we prefer the separate grating approach. This grating has 67gpm with 38 degree incident angle, and 32 degree facet angle.
MMIRS Fringing Report

Paul Martini
February 11, 2005

Updated April 29, 2005 [PM]

100 Overview
The MMIRS Hawaii-2 detector array will experience fringing due to optical interference in the detector’s sapphire substrate. Fringing causes a modulation of the detector’s sensitivity when illuminated by dispersed light and therefore can adversely affect spectroscopic observations. In principle, fringing can be removed by dividing by a flat field. However, any shift in the way light is dispersed onto the detector between the flat field and the science observations, most notably due to instrument flexure, will result in an imperfect fringing correction. This document describes the origin of the fringing, calculates its periodicity for the MMIRS spectroscopic modes, and estimates the magnitude of the error as a function of flexure. The final result of this analysis is that flexure should be less than 0.1 pixels between the science and flatfield observations and therefore a flatfield mechanism should be developed so that flatfields can be obtained at the same instrument orientation as the science observations.

200 Nature of Fringing
The Hawaii detectors manufactured by Rockwell have a sapphire layer above the HgCdTe detector material. Fringing is caused by multiple reflections and optical interference within the sapphire layer. In spectroscopic mode, the wavelength of light striking the detector will vary with position. This linear dispersion in microns per pixel due to a grism can be described by the following formula:

\[d = \frac{dl}{dx} = \frac{\cos t}{mgf} p \]

where \(\cos t \) is the prism angle, \(m (=1) \) is the grating order, \(g \) is the groove spacing, \(f \) is the MMIRS camera focal length (=285mm), and \(p \) is the pixel size (18 microns).

The multiple reflections of light inside the sapphire layer are very analogous to a Fabry-Perot and the order of the interference as a function of wavelength can be calculated with the Fabry-Perot equation:

\[m(l) = \frac{2nd\cos y}{l} \]

where \(m \) is now the interference order (not the order of the dispersed light, which is always 1 for the MMIRS grisms), \(l \) is the wavelength of the dispersed light in microns, \(n \) is the refractive index of sapphire layer (=1.74), \(d \) is the thickness of this layer (=381 microns; McGregor 2000), and \(y \) is the incident angle of the light on the sapphire layer. This is shown in Figure 1 below. Note that for small values of \(y \) the order is essentially independent of \(y \).
Here \(y \) is assumed to be zero and the actual interference order for some \(y \) can be calculated by multiplying the value of \(m \) by \(\cos y \).

230 Fringe Periodicity

The interference order \(m \) is a function of wavelength and the fringe spacing in pixels at a given wavelength is set by both the wavelength difference between \(m(l) \) and \(m(l)+1 \) and the linear dispersion of the grism. The fringe spacing \(F \) as therefore a function of wavelength:

\[
F(l) = \frac{l}{d \left[\frac{2nt \cos y}{l} + 1 \right]}
\]

for a linear dispersion \(d \) (in microns per pixel). For a given flexure error in pixels and fixed fringe amplitude, the wavelengths and resolution modes with the closest fringe spacings will produce the largest errors in the fringe correction. The above equation therefore indicates that shorter wavelengths and lower linear dispersions are likely most sensitive to errors in the fringing correction. The next five figures (Figure 2 collectively) show the fringe spacing \(F \) in pixels as a function of wavelength for the five MMIRS spectroscopic modes.
J Grism Fringe Spacing

H Grism Fringe Spacing

K Grism Fringe Spacing
300 Impact of Flexure on Calibration

The total pixel-to-pixel sensitivity variation can be expressed as some background level \(B \) and an additional fringing modulation with amplitude \(A \) whose functional form can be described by a cosine:

\[
 f(p) = B + A \cos\left(\frac{2\pi p}{F}\right)
\]

where \(F \) is the wavelength-dependent fringe spacing in pixels and \(p \) is the pixel coordinate. The fringing modulation is actually integrated over each pixel, so the contribution per pixel is:

\[
 \Gamma = B + \frac{AF}{2\pi} \left[\sin\left(\frac{2\pi (p + 1)}{F}\right) - \sin\left(\frac{2\pi p}{F}\right) \right]
\]

If there is some flexure \(df \) in pixels, the fringing modulation is:
\[
\Gamma' = B + \frac{AF}{2\pi} \left[\sin \left(\frac{2\pi(p + df + 1)}{F} \right) - \sin \left(\frac{2\pi(p + df)}{F} \right) \right]
\]

If there has been some amount of flexure \(df\) between the observation and the flatfield, the error as a function of fringe spacing can be expressed as:

\[
E(df,F) = \frac{\Gamma}{\Gamma'} = \frac{1 + \frac{AF}{2\pi B} \left[\sin \left(\frac{2\pi(p + 1)}{F} \right) - \sin \left(\frac{2\pi p}{F} \right) \right]}{1 + \frac{AF}{2\pi B} \left[\sin \left(\frac{2\pi(p + df + 1)}{F} \right) - \sin \left(\frac{2\pi(p + df)}{F} \right) \right]}
\]

For a given grism, the magnitude of the error induced by flexure at any given pixel depends on the fractional amplitude of the fringing \(A/B\) and the size of the flexure relative to the fringe spacing at that pixel. According the NIFS documentation (MacGregor 2000), which quotes a report from Hodapp et al. (1996) on the Hawaii-1 detector, this amplitude is approximately 10%. For factor of two or less changes in the amplitude, the fringing error scales linearly with amplitude.

The size of the error at any given pixel depends on wavelength because the fringe spacing depends on wavelength and therefore the flexure \(df\) and the fringe spacing \(F\) beat against one another like waves of different frequency. While the errors at the locations of the brightest OH sky lines may be the most critical quantities for accurate sky subtraction, the maximum fractional deviation from a perfect correction \((E=1)\) is a reasonable, and more general, measure of the error induced by flexure. This quantity, termed the ‘Fringe Correction Error’ is shown in Figure 3 below for all five spectroscopic modes of MMIRS as a function of flexure in pixels.

![Fringe Correction Error](image)

Figure 3: Series 1, 2, and 3 correspond to the medium resolution J, H, and K grisms, respectively. Series 4 and 5 correspond to the lower resolution J+H and H+K grisms, respectively.
For the moderate resolution grisms, the fractional error is largest with the shortest-wavelength J grism. This is because the fringe spacing is smallest at the shortest wavelengths and thus a given amount of flexure corresponds to a larger fraction of the fringe spacing F. The error ‘saturates’ at approximately half the typical fringe spacing for a given setting at a value approximately twice the fringe amplitude. For the $J+H$ and $H+K$ grisms the fractional errors are nearly identical for all but the smallest flexures. This appears to be because the fringe spacing is within a factor of a few for these grisms.

400 Conclusion

Based on this analysis, flexure of less than 0.1 pixels is necessary to achieve calibrations good to 1%. As MMIRS does not have an active flexure compensation mechanism, it is unlikely that the mechanical design will achieve this goal. The best solution for critical applications is therefore to obtain flatfield observations with the same instrument orientation as the science observations. One possible solution is to include a diffuser in the Dekkar wheel. Note that better than 1% calibrations are likely to be limited by variations in the time- and wavelength-dependent telluric absorption. The best solution in this case may be to include a relatively flat-spectrum object in one of the spectroscopic slits.

References

- Hodapp, K. et al. (1996), New Astronomy, 1, 177.
Section II.8

Stray Light Analysis

This document will be available at the CDR.
Section III.

MOS Section Design

1. MOS Specifications
2. MOS Section Mechanical Design
3. MOS Design Supporting Calculations
 a. MOS and Dekker Wheel Drivetrain Calculations
 b. MOS and Dekker Wheel Repeatability Calculations
 c. Guider and WFS Mechanism Calculations
 d. MOS Long Slit Sizing Calculations
MMIRS MOS SPECIFICATIONS

S-MMIRS-201

George Nystrom
February 23, 2004

Updated May 27, 2004 by GN [PDR version]
Updated April 20, 2005 by GN [edits]
Updated April 29, 2005 by PM [reformatted, minor edits]

100 Introduction

This document details the specifications for the Multi-Object Slit Section (MOS Section) of the MMIRS instrument. The MMIRS Functional and Performance Requirements document (F&P; document number S-MMIRS-200) is the instrument’s controlling document. If there are any discrepancies between the F&P and this document, the F&P shall prevail.

The MOS Section mounts directly to the Camera Section’s front vacuum bulkhead and provides the structural attachment points and a vacuum enclosure for all of the assemblies listed below. The MOS Section includes thermal shields, an LN2 reservoir and feedthroughs, electrical interface connectors, a G10 support ring, and the structural interface to the Camera Section. The specifications for the Camera Section are presented in the document S-MMIRS-203.

The following F&P requirements and specifications are particularly relevant to the MOS Section:

1. Section 100—Optical Requirements
2. Section 300—Mechanical Requirements
3. Section 400—Electrical and Electronic Requirements
4. Section 600—Observatory Physical Interface
5. Section 700 – Environmental Requirements
6. Section 800—Other requirements

Note also that the MOS Section must meet the rigidity specifications for the MMIRS instrument when combined with the Camera Section.

200 Vacuum integrity

The MOS assembly shall be leak tight to less the 5 x 10^{-6} STD cc of helium/sec. Proper material selection and cleanliness during assembly must be exercised to minimize contamination due to out gassing. All enclosed volumes, such as tapped holes, must be vented. The vacuum system requirements are provided in section 900 below.
300 Axis definitions
The optical axes are defined as follows: the Z axis is along the optical axis with +Z towards the detector, Y is the elevation axis, and X is perpendicular to the Y-Z plane. These axis definitions apply only when the telescope rotator is at the “0” position.

400 Optics
The MOS Section supports the two corrector lenses. The first corrector element (lens 1) is also a vacuum window for the MOS section. The following specifications must be satisfied for the optical elements:

1. Positioning is provided in the MMIRS Optical Specification document.
2. Temperature range:
 a. First element follows ambient temperature: 313 to 258 degrees Kelvin (40 to -15 Celsius).
 b. Second element is 313 to 248 degrees Kelvin (40 to -25 Celsius).
3. Pressure:
 a. The first lens must support one (1) atmosphere across its entire surface at sea level. The lens shall be bonded to an aluminum cell to provide a radial restraint. In turn, the cell shall provide a vacuum seal to its mounting surface with an O-ring. The O-ring must be fully seated at 0.75 atmospheres.
 b. The second element is in equilibrium with its pressure environment and the design must provide adequate venting paths. Its pressure range is from one atmosphere to 1×10^{-7} Torr.
4. Moisture:
 The first corrector lens cell shall have a dry air line or dry nitrogen fitting to allow connection to a purge line. The gas flow must be sufficient to prevent condensation on the lens.
5. Mounting:
 The lens cells must not distort the lenses with either thermal or mechanical stresses. The lens stress level must not exceed ± 200 psi due to thermal, vibrational, and mechanical sources. The first lens is to use the bonding system developed for other MMT lens systems. This lens will not be subjected to Cryogenic temperatures. The second lens shall be mounted using standard flexure techniques. The cell designs shall allow for their removal. A spacer is required between the second lens and its mounting surface to allow for small adjustments in the distance between the two corrector lenses.
6. Stray light baffles:
 Baffles to reduce stray light are required. Refer to MMIRS Stray Light Analysis for their size and positioning.

500 Guider and Wave Front Sensor
Two optical guide cameras and wavefront sensors (GWFS) are required and shall be fed by identical optical systems. The optical diagram and design requirements for the GWFS are presented in the document S-MMIRS-204. The GWFS units shall be located outside of the MOS vacuum vessel on fixed supports. The pickoff mirrors for the GWFS shall be mounted on a structural support attached to the cold plate, which will provide a conductive thermal path for the mirrors. The mirrors shall be sized to cover the full 14 arc-minute field of view of the corrector lens system. They shall be placed as close as possible to the MOS focal plane and must not occult the science beam or scatter light into the entrance slit.
The folded optical beam to each GWFS must pass through a window, which shall serve as a vacuum seal. Each re-imaging lens system is carried on a stepper motor driven Y - Z stage that shall have sufficient range of travel to cover the full field provided by the pick-off mirror. A focus stage will also be provided for the detector. The optics required to select the wavefront sensor mode shall reside on a translation stage that can be inserted into the optical path.

600 Dekker wheel
The Dekker wheel is used to prevent light from entering the science beam through neighboring, unused slit wheel apertures. The Dekker wheel shall have apertures:

- Long slit aperture
- MOS aperture
- Imaging aperture
- Blank aperture
- Long slit diffuser
- MOS aperture diffuser

The aperture designs shall allow adequate optical clearance for the science beam and not vignette or scatter light into the science beam. The individual apertures shall follow the Flamingos2 design concept, except for size. The imaging aperture must be oversized to allow a full 7.0 arc-minute image on the detector.

610 Dekker wheel design parameters
The Dekker wheel shall have a stepper-motor driven worm gear system capable of satisfying the following requirements:

1. A minimum factor of safety of 2.5 times the worst-case expected drive torque.
2. Unlimited angular rotation in the clockwise and counterclockwise directions.
3. The wheel’s detent system shall have positional accuracies as specified in F&P section 310. Those requirements are repeated here; however they must be verified against the F&P
 a. Repeatability: within ± 250 microns on all axes.
 b. Stability: within ± 150 microns in all axes for one full instrument rotation about the -Z axis over the telescope’s elevation range.
 c. Detent offset: less than 100 microns slit to detent (non-cumulative).
 d. Alignment of Dekker apertures to the MOS wheel slits: ± 150 microns.
4. Micro-switch sensing systems:
 a. One switch shall sense the detent position.
 b. A Home micro-switch shall allow the stepper counter to be re-set. The identification of mask positions will be done in software using both step counting and the micro-switch information.
 c. The home switch shall be located at the Dekker wheel’s open position.
5. Maximum time to move 180 degrees shall not exceed 30 seconds with 10 seconds as a goal. The software shall determine the direction to use to minimize travel time.
6. All designs must operate in a vacuum (≈1x10⁻⁷ Torr) and at both ambient temperature conditions and at an operating temperature of ≈ 80 to 140 degrees Kelvin.
7. All designs shall use vacuum compatible materials and consider temperature effects.
8. An intermediate electrical interface connector is required between the Dekker assembly and the Vacuum chamber interface connector. This allows ease of motor and/or switch replacement.

9. The desired wheel/mask operating temperature is less than 120 K. The wheel must meet its target temperature in the time specified in F&P section 350.

10. The Dekker wheel and all other precision manufactured parts must be cycled to cryogenic temperatures during the manufacturing process to relieve stress and to increase cryogenic temperature stability. This process is specified in the document S-MMIRS-202.

700 Multi-Object Slit (MOS) wheel

The MOS wheel is used to position slit masks in the telescope's focal plane. The slit’s spectral direction is perpendicular to its radius and the spatial direction is parallel to its radius. The MOS wheel shall have the following three types of apertures and number of each type:

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS</td>
<td>9</td>
</tr>
<tr>
<td>Long Slits</td>
<td>7</td>
</tr>
<tr>
<td>Imaging</td>
<td>1</td>
</tr>
</tbody>
</table>

The MOS area is 7.0 arc-minutes (69.14mm) in the spatial direction and ±2.0 arc-minutes (39.51mm) in the spectral direction at the MOS slit. The MOS slits shall be oversized to 69.34 x 39.71 mm to allow for detent error. The slits will have various patterns depending on the observed celestial field. The long slits shall all be 7.0 arc-minutes in the spatial direction and have widths of 1, 2, 3, 4, 6, 8 and 12 detector pixels. These widths correspond to 0.033mm (0.0013in), 0.069 (0.0027), 0.102 (0.004), 0.137 (0.0054), 0.206 (0.0081), 0.274 (0.0108) and 0.409mm (.0161in), respectively. The imaging aperture will be oversized to ensure filling the detector surface. It shall be 70 mm square.

The slit wheel apertures shall allow sufficient optical clearance for the science beam so as not to introduce any vignetting and/or scattered light. The individual MOS slit masks shall follow the Flamingos2 design concept, except for size. The plate scale at the slit plane is 9.8799mm/arc-minute. The slit masks must be thermally coupled to the slit wheel with their cold operating temperature < 120 degrees Kelvin with a maximum change during the night observing time of 10 degrees Kelvin.

710 MOS wheel design parameters

The MOS wheel shall have a stepper-motor driven worm gear system capable of satisfying the following requirements:

1. A minimum factor of safety of 2.5 times the worst case expected drive torque.
2. Unlimited angular rotation in either the clockwise or counterclockwise directions.
3. The wheel detent system shall have positional accuracies as specified in F&P section 310. Those requirements are repeated here; however, they must be verified against the F&P.
 a. Repeatability: within ± 25 microns in X & Y axis
 d. Stability: within ± 6 microns in X & Y axis for one full instrument rotation about optical axis.
 b. Detent offset: less than 100 microns slit to detent (non-cumulative).
4. Micro-switch sensing systems:
 a. One switch shall sense the detent position.
b. A home micro-switch shall allow the stepper counter to be reset. The identification of the
mask position will be done in software using both step counting and micro-switch
information.
c. The home switch shall not be located at a detent position.
5. The maximum time to move 180 degrees shall not exceed 30 seconds with a goal of 10 seconds.
The software shall determine the direction to use for the minimum rotational travel.
6. All designs must operate in a vacuum ($\approx 1 \times 10^{-7}$ Torr) at both ambient temperature and at a
temperature of less than 120 Kelvin.
7. All designs shall use vacuum-compatible materials and consider temperature effects.
8. An electrical interface connector is required between the MOS wheel drive assembly and the
vacuum chamber interface connector. This is for ease of motor and/or switch replacement.
9. The desired wheel operating temperature is less than 12 Kelvin. The wheel must meet the
temperature requirements and times presented in F&P section 300.
10. The wheel shall have a common mounting plane for all slits to within ± 12.5 microns in the plane
perpendicular to the Z-axis.
11. The long slits and imaging aperture shall be permanently fixed to the wheel by screws and have
adequate thermal coupling to attain a temperature of less than 120 Kelvin in the required time.
12. The MOS slit plates shall be removable. They shall have repeatable positioning within 200
microns of their nominal position in the X and Y planes. The reflectivity of the plates on the side
facing the detector shall be minimized to avoid ghost reflections.
13. The MOS wheel and all other precision manufactured parts must be cycled to cryogenic
temperatures during the manufacturing process to relieve stress and to increase their cryogenic
temperature stability.
14. The MOS slit plates shall have a bar code for identification.

800 Dekker and MOS Mounting Plate

Dekker and MOS mounting plate shall provide a rigid mounting surface for the following:

1. Dekker wheel assembly
2. MOS wheel assembly
3. LN2 reservoir
4. GWFS pickoff mirrors
5. Thermal sensors
6. MOS Heater
7. Detent mechanisms
8. Radiation shields

The MOS Dewar shall be designed to provide a structural interface to the G10 isolation ring and provide
the required LN2 capacity to satisfy F&P requirements specified in section 300. The MOS Dewar shall
also be instrumented with heaters, thermal sensors and insulation based on MMIRS thermal design. The
MOS Dewar shall meet the required positioning tolerances specified in this document and F&P sections
200 & 300. The mounting plate shall be thermally isolated from the MOS vacuum vessel, yet have
sufficient rigidity to satisfy the required positioning tolerances. The mounting plate and MOS wheels shall
provide a light-tight barrier about the entrance slit, yet have sufficient conductance so that they do not
limit the pump-down time of the Camera Section.
900 Vacuum system
The MOS structural shell shall provide the necessary interfaces to mount the vacuum components as specified on drawing number: C-MMIRS-102.

The MOS vacuum system requires that a safety interlock system be developed to prevent accidental venting of the MOS structural shell while the Camera section’s isolation valve is open. This requires that both the Camera Isolation Valve and MOS Vent Valve be safety inter-locked. The design of this system requires a safety review prior to implementation.

The vacuum system shall be capable of evacuating the MOS volume to below 10^{-4} Torr within 20 minutes. Cryogens can be introduced once this pressure is achieved.

The vacuum system shall be manually operated, with the exception of the camera’s isolation valve.

The total cryostat pump down time (after initial bakeout and several pump-down cycles) shall be less than 4 hours to achieve a pressure of 1×10^{-4} Torr.

1000 Cryogenic systems
The MOS Cryogenic system is used to cool all entrance slits and Dekker masks to temperature specified above and to maintain their temperatures for 30 hours. Also, the design shall allow for rapid warm-up to allow changing of MOS slits during the daytime. A heating system must be properly sized for this requirement. Refer to F&P sections 100 and 440 for these requirements.

1. The LN$_2$ Reservoir shall have a minimum LN2 capacity to maintain all MOS cryogenic components to R&PR specified temperatures for a minimum hold time of 30 hours when at operating vacuum pressure.
2. The LN$_2$ Fill and Vent lines shall be designed to minimize thermal conduction to the MOS shell. The Flamingos2 LN2 designs are to be used as a reference.
3. The MOS structural shell shall be isolated by a system of thermal shields thereby limiting thermal losses.
4. A Heating circuit needs to be designed using Kapton heaters to warm the MOS Dewar to allow daytime changing of the MOS slits.

1100 Radiation Shields
A system of radiation shields shall be used to minimize heat transfer to the cold components from the surrounding vacuum vessel. Their effectiveness must satisfy the hold time requirements stated in F&P section 353. The use of thermal blankets is allowable; however, they must use low out-gassing materials and be properly prepared for vacuum use.
MOS SECTION
MECHANICAL DESIGN

Ken McCracken
Center for Astrophysics
Smithsonian Astrophysical Observatory
Cambridge, MA
Table of Contents

MOS SECTION MECHANICAL DESIGN .. 1

TABLE OF CONTENTS... 2

100 MOS SECTION ... 3
 101 Vacuum Vessel and Top Plate... 6

110 Internal Components.. 7
 111 Corrector Lens System... 7
 112 Guider/Wave Front Sensor Pick-off Mirror and Optical Baffles............... 8
 113 Dekker Wheel... 9
 114 Multi-Object Slit Wheel.. 10
 115 Liquid Nitrogen Dewar.. 12
 116 Thermal Shields, Heaters and Temperature Monitoring Devices............ 14

120 External Components.. 16

200 MOS SECTION COMPLIANCE MATRIX 17
100 MOS Section

The Multi-Object Slit (MOS) section houses the following components in an aluminum vacuum vessel:

- Corrector Lens System
- Guider/Wave Front Sensor Pick-off Mirror and Optical baffles
- Dekker Wheel
- Multi-Object Slit Wheel
- Liquid Nitrogen Dewar
- Thermal Shields, Heaters and Temperature Monitoring Devices.

Figure 1 – MOS Section Interior 3D View
The following components are part of the MOS section; however external to the vacuum vessel:
- Guider/Wavefront Sensor Assembly (For additional Details see MMIRS Guider and Wave Front Sensor Section)
- Turbo Pumping System
- Pfeiffer Vacuum Gauge

The performance and operating characteristics for the MOS Section are defined in SAO specification S-MMIRS-201.

![Figure 2 – MOS Section Exterior 3D View – MOS access side](image-url)
Figure 3 – MOS Section Exterior 3D View – Vacuum / LN$_2$ Fill/Vent Side
101 Vacuum Vessel and Top Plate

The MOS Section vacuum vessel consists of two components made of 6061 aluminum. The slightly domed Top Plate is nominally .125 inch thick. The top plate supports the Corrector assembly. The cylindrical portion is nominally .187 inch thick and has supports for the Guider/WFS assemblies and allows access to the removeable MOS plates. The lower flange bolts to the Instrument Bulkhead (see the Camera section). Tapped holes are available for lifting and handling each piece. An O-ring seals the vacuum at the Top Plate to MOS Chamber interface and the MOS Chamber to Instrument Bulkhead interface.

Figure 4 – MOS Vacuum Vessel
110 Internal Components

111 Corrector Lens System

The two-element corrector lens system brings the 14 arc-min diameter telescope field to focus at the MOS slit. The central 7 arc-minute square field is the science field.

The first element (Lens 1) of the corrector is RTV-bonded to its cell using techniques developed for other MMT instruments. Lens 1 serves as an optical element and as the entrance window providing the necessary vacuum seal. The second element (Lens 2) is mounted in a standard three-point restraint where one restraint has compliance (spring loaded). Lens 1 is predicted to operate approximately 4°C below ambient. Provisions for blowing dry air over the outside surface of the lens have been made to prevent condensation. Lens 2 is predicted to operate approximately 7°C below ambient.

Figure 5 – Corrector Assembly
112 Guider/Wave Front Sensor Pick-off Mirror and Optical Baffles

The field outside the science field is used for guiding and wave front sensing. A pickoff mirror is used to fold this field through windows to the externally mounted Guider/Wavefront Sensor Assembly. The pickoff mirror is a diamond-turned 6061 aluminum mirror thermally coupled to the dewar. A cold shield surrounds the 14” field from the corrector to the pickoff mirror to limit the thermal background to the IR detector. Baffles mounted to the vacuum vessel shield the guide field as it exits the chamber to the guider/WFS assemblies. These warm guider baffles will be insulated with MLI to reduce thermal coupling to the dewar.

Figure 6 – Guider Pickoff Mirror and Optical Baffles
113 Dekker Wheel

The Dekker wheel is used to limit the MOS slit’s field of view. It has six positions, one mask for each slit type, a diffuser for each slit type, blanking and open apertures. The wheel is a motor driven worm gear arrangement with home and detent indicating microswitches. A mechanical detent will control the wheel’s position. The home detent microswitches are explained in the Multi-Object Slit Wheel Section. The wheel is to be balanced to within the bearing friction minimizing the required detent force. The small lead angle of the single thread worm and the balanced wheel will eliminated any backdriving potential. The wheel is spaced off the top of the dewar by sapphire balls creating a thermally conductive bearing.

Figure 7 – Dekker Wheel and Drive
114 Multi-Object Slit Wheel

The MOS wheel positions the slit masks at the telescope’s focus for spectroscopy and imaging. The MOS wheel has 9 MOS slits, 7 long slits, and one imaging aperture. The MOS slits provide a usable aperture of 7’ spatially by 4’ spectrally. The MOS slits are populated with interchangeable assemblies containing plates machined specifically for the planned observation. The long slits are not interchangeable and will be available in seven spectral widths by 7’ in the spatial direction.

The MOS wheel is driven in a similar manner to the Dekker wheel (see Figure 10). The worm drive backlash will be adjusted to allow a clearance of 2-3 steps. This will allow the detent mechanism to control the wheel’s position. The detent microswitch (not shown in Figure 7) will sense when the roller enters and exits the detent feature. The wheel will be commanded to the desired location and then commanded one stop in the reverse direction. The purpose of the reverse step is to disengage the worm drive from the wheel so that the detent can position the wheel. The motion control system will record the exact motor step at which the detent switch is activated. This will be used to verify arrival at the correct location.

Figure 8 - MOS Wheel Detent

The home position is not at a detent. A cam having identical slopes allowing activation from either direction will be used for the home switch. To serve as a precision reference it must be approached only in one direction.
Figure 9 - Home Switch

The MOS wheel is to be balanced to within the bearing friction. This is required so that the worm is always pushing the wheel no matter what the gravity orientation is. The wheel is spaced off the top of the dewar by sapphire balls creating a thermally conductive bearing. The MOS wheel is predicted to operate at 82°K during observation, well below the requirement of 120°K. The wheel is predicted to be within 10°K of the steady state temperature in 2 hours.

Figure 10 - MOS Wheel and Drive
115 Liquid Nitrogen Dewar

The Liquid Nitrogen dewar has fill and vent lines arranged to limit spillage caused by extreme telescope orientations. These limits are taken to be 1) horizon pointing with the instrument rotator at 0, and 30 degrees elevation with the rotator at +/-115 degrees. The MOS and Camera fill lines will connect to a common manifold allowing both dewars to fill from one connection. The maximum MOS dewar LN2 volume is 55-liters. A hold time greater than 30 hours has been calculated assuming a 50% fill.

The dewar’s front reinforced surface is the mounting surface for the Dekker, MOS and Pickoff mirror assemblies. The 6061 aluminum dewar will be stress relieved by cooling from room temperature to 77K at various steps during the machining process.

A G10 tube bonded into 6061 aluminum rings structurally connects the dewar to the vacuum vessel. G10 minimizes the conductive heat loss from the dewar and provides a compliant support. Compliance is required of the support due to the thermal contraction and expansion undergone when filling and heating the dewar. The G10 support is bolted and pinned to the Dewar and MOS Chamber.

Figure 11 – MOS LN₂ Dewar
Fill and Vent Lines are drilled thru the Dewar outside wall to the center of Dewar

Coupling with Indium Gasket

LN$_2$ Fill Line

LN$_2$ Vent Line

Convoluted Tubing (shown thru Dewar)

Figure 12 – Interior View of Dewar with LN2 Fill and Vent Lines shown thru the top of the Dewar

G10 Tube

Aluminum Rings

Figure 13 – Section Cutaway from Dewar and G10 Support Structure
116 Thermal Shields, Heaters and Temperature Monitoring Devices

An arrangement of thermal shields are shown in Figures 14 and 15. These limit thermal exchanges between the warm and cold surfaces with temperature sensors placed in areas of concern. The required MOS section temperature sensors are located as follows:

- MOS Dewar (Figure 11)
- MOS Cold Shield (Figure 15)

The MOS Dewar temperature sensor will be used to control the MOS section heaters. The MOS Cold Shield temperature sensor will be used for the Isolation valve safety interlock logic.

The following locations will be provided with temperature sensors for initial instrument assembly and checkout (locations not shown):

- Lens 2 attached to the lens mount material
- Pickoff Mirror attached to the mirror base
- L2 Baffle attached to the outside surface facing the access port
- GWFS Baffle attached to the outside top facing the top dome
- MOS Wheel attached to wheel rim (static test only!)

Figure 14 – Floating Thermal shields
Figure 15 – Cold Shields
120 External Components

The components connected to the outside of the MOS chamber are shown in Figure 16 and described elsewhere. They are:

- LN$_2$ plumbing
- Turbo pump
- Vacuum gauge
- Guider/WFS assemblies
- Calibration lamps (not shown)

![Figure 16 – External items](image-url)
200 MOS Section Compliance Matrix

<table>
<thead>
<tr>
<th>Issue</th>
<th>Requirement</th>
<th>Document</th>
<th>MMIRS Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulit-Slit Capability</td>
<td>Provide (8) 4" x 7" exchangable multi-slit plates</td>
<td>S-MMIRS-200 / Section 115 / p. 10</td>
<td>Design provides for (9) 4’ x 7’ exchangable multi-slit plates</td>
</tr>
<tr>
<td>Long Slit Capability</td>
<td>Provide (7) long slits 7’ x 1,2,3,4,6,8, and 12 pixels wide spectrally</td>
<td>S-MMIRS-200 / Section 116 / p.11</td>
<td>By Design</td>
</tr>
<tr>
<td>Imaging Aperture</td>
<td>Provide (1) 7’ square imaging aperture</td>
<td>S-MMIRS-200 / Section 117 / p. 11</td>
<td>By Design</td>
</tr>
<tr>
<td>MOS Wheel Mechanism</td>
<td>±25 microns in X and Y axis</td>
<td>S-MMIRS-201 / Section 710 / p. 4</td>
<td>±8.8 microns X ±9.7 microns Y</td>
</tr>
<tr>
<td>Dekker Wheel Mechanism</td>
<td>±250 microns in all axis</td>
<td>S-MMIRS-201 / Section 610 / p. 3</td>
<td>±8.8 microns X ±9.5 microns Y</td>
</tr>
<tr>
<td>Access to Liquid Nitrogen Ports</td>
<td>LN2 ports and valves shall be accessible without instrument removal from CIR</td>
<td>S-MMIRS-200 / Section 332 / p. 19</td>
<td>By Design</td>
</tr>
<tr>
<td>Access to Electrical Connections</td>
<td>Connections shall be accessible without instrument removal from CIR</td>
<td>S-MMIRS-200 / Section 333 / p. 19</td>
<td>By Design</td>
</tr>
<tr>
<td>Access to MOS Plate Exchange Port</td>
<td>Access shall be made without instrument disassembly</td>
<td>S-MMIRS-200 / Section 334 / p.20</td>
<td>By Design</td>
</tr>
<tr>
<td>Safety - Mechanism back driving</td>
<td>No mechanism shall be backdriveable in the event of loss of power</td>
<td>S-MMIRS-200 / Section 371 / p.23</td>
<td>By design</td>
</tr>
<tr>
<td>MOS Wheel Time to Function</td>
<td>Maximum of 30 seconds to any wheel position</td>
<td>S-MMIRS-200 / Section 372 / p.23</td>
<td>12.4 sec</td>
</tr>
<tr>
<td>Component</td>
<td>Specification</td>
<td>Reference</td>
<td>Result</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Dekker Wheel Time to Function</td>
<td>Maximum of 30 seconds to any wheel position</td>
<td>S-MMIRS-200 / Section 372 / p.23</td>
<td>18.3 sec</td>
</tr>
<tr>
<td>MOS Motor Drive Torque</td>
<td>Minimum Factor of Safety = 2.5</td>
<td>S-MMIRS-201 / Section 710 / p.4</td>
<td>FS = 45.0</td>
</tr>
<tr>
<td>Dekker Motor Drive Torque</td>
<td>Minimum Factor of Safety = 2.5</td>
<td>S-MMIRS-201 / Section 610 / p.3</td>
<td>FS = 59.3</td>
</tr>
<tr>
<td>Lens 1 Window Condensation</td>
<td>Provide plumbing for dry air purge over external window surfaces</td>
<td>S-MMIRS-200 / Section 670 / p.30</td>
<td>By Design</td>
</tr>
</tbody>
</table>

By Design
MOS and Dekker Drivetrain Calculations

Constants:

\[
\begin{align*}
\text{arcmin} & := \left(\frac{1}{60} \right) \text{deg} & \text{arcsec} & := \left(\frac{1}{3600} \right) \text{deg} & \text{ozf} & := \text{g} \cdot \text{oz} \\
\text{hz} & := \frac{1}{\text{sec}} & \text{rev} & := 360 \cdot \text{deg} & \text{rev} & = 6.283 \text{rad} \\
\text{rpm} & := \frac{\text{rev}}{1 \cdot \text{min}} & \text{rpm} & = 360 \frac{\text{deg}}{\text{min}} & \text{rps} & := \text{rpm} \cdot 60 \frac{\text{sec}}{\text{min}} \\
g & = 9.807 \frac{\text{m}}{\text{s}^2} & \mu \text{m} & := 10^{-6} \text{m}
\end{align*}
\]
MOS Wheel Section:

The allowable factor of safety on motor torque is 2.5.

\[F_{S_{torque}} := 2.5 \]

Motor Characteristics - Phytron VSS 52 - From Phytron datasheets:

MotorSteps := 200 \hspace{1cm} \text{(motor steps per rev)}

Nmotor_max := 300 \cdot \frac{rev}{min}

\[T_{MotorMax} := 33N \cdot cm \]

From Phytron: tested motor at 77K - for design calcs use 33Ncm (46.7 in oz) at 300 rpm, 60V

Jmotor := .15kg \cdot cm^2

\[J_{motor} = 1.5 \times 10^{-5} \text{kg m}^2 \]

MOS Wheel Parameters

MOSWheelDiameter := 480mm

Dens := 2710 \frac{kg}{m^3}

MOSWheelThickness := .625in

Gearing component selection (Steel Worm (single thread), Alum w/ hard anodizing on Worm Gear):

Nwg := 120 \hspace{1cm} \text{Worm Gear Teeth}

Dia_{wg_pitch} := 7.5 \cdot \text{in} \hspace{1cm} \text{Diametral Pitch of 16}

Nw := 1 \hspace{1cm} \text{Worm Threads}

\[\phi_n := 14.5 \cdot \text{deg} \]

\[\lambda_w := 5.7167 \cdot \text{deg} \]

\[f := 0.025 \]

\[E_w := \frac{\tan(\lambda_w) \cdot (1 - f \cdot \tan(\lambda_w))}{f + \tan(\lambda_w)} \]

\[E_w = 0.798 \text{ efficiency-from BostonGear} \]

\[N_f := \frac{N_{wg}}{N_w} \]

\(N_f = 120 \)
Calculate the component inertias for MOS Wheel Drive:

\[J_{\text{wheel}} := \left(\frac{\pi}{4} \right) \text{MOSWheelThickness} \times \text{Dens} \times \left(\frac{\text{MOSWheelDiameter}}{2} \right)^4 \]

\[J_{\text{wheel}} = 0.112 \text{kg m}^2 \]

\[J_{\text{shaft}} := \left(\frac{\pi}{32} \right) \text{3Dens} \times \left[(2.66\text{in}) \times (0.5\text{in})^4 + 0.94\text{in} \times (0.315\text{in})^4 \right] \]

\[J_{\text{shaft}} = 1.481 \times 10^{-6} \text{kg m}^2 \]

\[J_{\text{worm}} := \left(\frac{\pi}{32} \right) \text{3Dens} \times (1.497\text{in}) \times \left[(1.0\text{in})^4 - (0.5\text{in})^4 \right] \]

\[J_{\text{worm}} = 1.184 \times 10^{-5} \text{kg m}^2 \]

\[J_{\text{wormgear}} := \left(\frac{\pi}{32} \right) \text{Dens} \times (0.75\text{in}) \times (7.5\text{in})^4 \]

\[J_{\text{wormgear}} = 6.675 \times 10^{-3} \text{kg m}^2 \]

Calculate the torque due to bearing friction (using \(\mu = 0.0025 \) for ball and .006 for angular contact bearings, p. 482, Machine Design, sapphire estimated using angular Contact value):

\[\text{Dia}_{\text{ball bearing}} := 25\text{mm} \]

\[\text{Dia}_{\text{sapphire bearing}} := 5.125\text{in} \]

\[\text{Load}_{\text{bearing}} := 103\text{lbf} \]

\[T_{\text{ball bearings}} := \left[\left(\frac{0.0025 \cdot \text{Load}_{\text{bearing}}}{10} + 0.006 \cdot \text{Load}_{\text{bearing}} \right) \times \text{Dia}_{\text{ball bearing}} \right] \frac{1}{2} \]

\[T_{\text{ball bearings}} = 0.036 \text{N m} \]

\[T_{\text{sapphire bearing}} := \left[\frac{0.006 \cdot \text{Load}_{\text{bearing}} \cdot \text{Dia}_{\text{sapphire bearing}}}{2} \right] \frac{1}{2} \]

\[T_{\text{sapphire bearing}} = 0.179 \text{N m} \]

\[T_{\text{bearing total}} := T_{\text{sapphire bearing}} + T_{\text{ball bearings}} \]

\[T_{\text{bearing total}} = 0.215 \text{N m} \]
Calculate the detent force to overcome friction (assume an additional margin of 4X on the spring force):

\[F_{spring} := \frac{(T_{bearing_total} \cdot Margin_{spring})}{\sin\left(\frac{\pi}{4}\right) \sin\left(\frac{\pi}{4}\right) \cdot R_{wheel}} \]

\[F_{spring} = 7.221 \text{ N} \]

From the wheel geometry, the additional spring deflection to get the roller out of the detent feature is:

\[\text{Deflection}_{\text{additional}} := 3.591 \text{ mm} \]

Find a spring that gives the required holding force \(F_{spring} \) and only increases by 20% at the peak of the detent feature:

\[F_{spring_2} := 1.2 \cdot F_{spring} \]

\[\text{deflection} := \frac{\text{Deflection}_{\text{additional}}}{2} \]

\[\text{deflection} = 17.955 \text{ mm} \]

\[k_{spring} := \frac{F_{spring}}{\text{deflection}} \]

\[k_{spring} = 0.402 \frac{\text{N}}{\text{mm}} \]

\[k_{spring} = 2.297 \frac{\text{lbf}}{\text{in}} \]

From Century Spring, use PN 71061S (k=2.4 lb/in, max load = 2.6 lb).

Calculate actual torque at top of detent based on additional force at top of detent:

\[T_{detent} := \sin\left(\frac{\pi}{4}\right) \cdot F_{spring_2} \cdot (R_{wheel} + \text{Deflection}_{\text{additional}}) \]

\[T_{detent} = 1.48 \text{ N\cdot m} \]
Calculate MOS wheel acceleration based on the maximum motor torque available.

\[J_{load} := J_{wheel} + J_{wormgear} \]

\[J_{eq} := \left(\frac{J_{load}}{N_f \cdot E_w} \right) + (J_{shaft} + J_{worm}) \]

\[J_{total} := J_{motor} + J_{eq} \]

\[J_{eq} = 2.366 \times 10^{-5} \text{ kg m}^2 \]

\[J_{total} = 3.866 \times 10^{-5} \text{ kg m}^2 \]

Calculate MOS Motor maximum available acceleration (still assuming a FS_torque of 2.5):

\[\alpha_{motor_max_avail} := \frac{\left(\frac{T_{MotorMax}}{FS_{torque}} \right) - \left(\frac{T_{detent} + T_{bearing_total}}{N_f \cdot E_w} \right)}{J_{total}} \]

\[\alpha_{motor_max_avail} = 2.957 \times 10^3 \text{ rad sec}^{-2} \]

For consistancy across drives (and for a more reasonable acceleration), use the same acceleration as Grism (5718 steps/sq sec):

\[\alpha_{Grism} := 179.64 \frac{\text{rad}}{\text{sec}^2} \]

\[\alpha_{motor} := \alpha_{Grism} \]

\[\alpha_{wheel} := \frac{\alpha_{motor}}{N_f} \]

\[\alpha_{motor} = 179.64 \frac{1}{\text{s}^2} \]

\[\alpha_{wheel} = 1.497 \frac{1}{\text{s}^2} \]

Calculate the factor of safety on motor torque:

\[T_{reqd} := J_{total} \cdot \alpha_{motor} \]

\[T_{reqd} = 6.945 \times 10^{-3} \text{ N m} \]

\[FS_{torque_MOS} := \frac{T_{MotorMax} - \left(\frac{T_{detent} + T_{bearing_total}}{N_f \cdot E_w} \right)}{T_{reqd}} \]

\[FS_{torque_MOS} = 44.972 \]
Calculate positioning time period:

\[\omega_{\text{initial}} := 0 \text{ rev/ min} \]

\[\omega_{\text{wheel_final}} := \frac{\text{Nmotor_max}}{\text{Nf}} \quad \omega_{\text{wheel_final}} = 2.5 \text{ rpm} \]

\[\omega_{\text{motor_final}} := \text{Nmotor_max} \quad \omega_{\text{motor_final}} = 300 \text{ rpm} \]

\[\text{time}_{\text{accel}} := \frac{\left(\omega_{\text{motor_final}} - \omega_{\text{initial}} \right)}{\alpha_{\text{motor}}} \quad \text{time}_{\text{accel}} = 0.175 \text{ s} \]

\[\text{Position_Angle} := \pi \text{ rad} \]

\[\text{time}_{\text{position}} := \frac{(\text{Position_Angle} \cdot \text{Nf})}{\text{Nmotor_max}} + 2\text{time}_{\text{accel}} \quad \text{time}_{\text{position}} = 12.35 \text{ s} \]

Calculate Inertia ratio:

\[J_{\text{ratio}} := \frac{(\text{Jeq})}{\text{Jmotor}} \quad J_{\text{ratio}} = 1.577 \]
Dekker Wheel Section:

The Dekker Wheel uses the same Motor as the MOS Wheel.

Dekkar Wheel Parameters

DekkerWheelDiameter := 388.3mm
DekkerWheelThickness := .5in

Gearing component selection (Steel Worm (single thread), Alum w/ hard anodizing on Worm Gear):

DiaPitchDekker := 12
Nwg_d := 181
Dia_wg_D_pitch := \frac{Nwg_d}{DiaPitchDekker} *
Dia_{wg_D_pitch} = 15.083
Nw_d := 1
\lambda_{w_d} := 4.76667\, \text{deg}
Efficiency
E_{w_d} := \left[\frac{\tan\left(\lambda_{w_d}\right)\cdot\left(1 - f \cdot \tan\left(\lambda_{w_d}\right)\right)}{f + \tan\left(\lambda_{w_d}\right)}\right]
E_{w_d} = 0.768
Nf_D := \frac{Nwg_d}{Nw_d} *
Nf_D = 181
Final Gear Ratio

Calculate the component inertias for Dekker Wheel Drive

Jwheel_D := \left(\frac{\pi}{4}\right)\cdot\text{DekkerWheelThickness}\cdot\text{Dens}\cdot\left(\frac{\text{DekkerWheelDiameter}}{2}\right)^4
Jwheel_D = 0.038\, \text{kg}\cdot\text{m}^2
The torque due to bearing friction uses all the same assumptions as in MOS section.

Calculate the detent force to overcome friction (assume an additional margin of 4X on the spring force):

\[R_{\text{wheel_d}} := 183.036 \text{mm} \]

\[F_{\text{spring_d}} := \frac{T_{\text{bearing_total}} \cdot \text{Margin}_{\text{spring}}}{\sin \left(\frac{\pi}{4} \right) \cdot \sin \left(\frac{\pi}{4} \right) R_{\text{wheel_d}}} \]

\[F_{\text{spring_d}} = 9.385 \text{ N} \]

From the wheel geometry, the additional spring deflection to get the roller out of the detent feature is:

\[\text{Deflection}_{\text{additional_d}} := 3.591 \text{ mm} \]

Find a spring that gives the required holding force \((F_{\text{spring}})\) and only increases by 20% at the peak of the detent feature:

\[F_{\text{spring_d_2}} := 1.2 \cdot F_{\text{spring_d}} \]

\[\text{deflection_d} := \frac{\text{Deflection}_{\text{additional_d}}}{2} \]

\[\text{deflection_d} = 17.955 \text{ mm} \]

\[k_{\text{spring_d}} := \frac{F_{\text{spring_d}}}{\text{deflection_d}} \]

\[k_{\text{spring_d}} = 0.523 \frac{\text{N}}{\text{mm}} \]

\[k_{\text{spring_d}} = 2.985 \frac{\text{lbf}}{\text{in}} \]

From Century Spring, use PN 71473S \((k=3.0\text{lb/in, max load = 3.3 lb})\).

Calculate actual torque at top of detent based on additional force at top of detent:

\[T_{\text{detent_d}} := \left[\sin \left(\frac{\pi}{4} \right) \cdot F_{\text{spring_d_2}} \cdot \left(R_{\text{wheel_d}} + \text{Deflection}_{\text{additional_d}} \right) \right] \]

\[T_{\text{detent_d}} = 1.486 \text{ N\cdotm} \]
Calculate Dekker wheel acceleration based on the maximum motor torque available.

\[
J_{\text{load, d}} := J_{\text{wheel, D}}
\]
\[
J_{\text{eq, d}} := \frac{J_{\text{load, d}}}{N_f D^2 E_{w, d}} + (J_{\text{shaft}} + J_{\text{worm}})
\]
\[
J_{\text{eq, d}} = 1.485 \times 10^{-5} \text{ kg m}^2
\]
\[
J_{\text{total, d}} := J_{\text{motor}} + J_{\text{eq, d}}
\]
\[
J_{\text{total, d}} = 2.985 \times 10^{-5} \text{ kg m}^2
\]

Calculate Dekker Motor maximum acceleration (still assuming a \(FS_{\text{torque}}\) of 2.5):

\[
\alpha_{\text{motor, max avail, d}} := \left(\frac{T_{\text{MotorMax}}}{FS_{\text{torque}}} \right) \left(\frac{T_{\text{detent, d}} + T_{\text{bearing, total}}}{N_f D^2 E_{w, d}} \right) / J_{\text{total, d}}
\]
\[
\alpha_{\text{motor, max avail, d}} = 4.012 \times 10^3 \text{ rad/sec}^2
\]

For consistency across drives (and for a more reasonable acceleration) use the same acceleration as Grism (5718 steps/sq sec)

\[
\alpha_{\text{motor, d}} := \alpha_{\text{Grism}}
\]
\[
\alpha_{\text{motor, d}} = 179.64 \text{ rad/sec}^2
\]
\[
\alpha_{\text{wheel, d}} := \frac{\alpha_{\text{motor, d}}}{N_f D}
\]
\[
\alpha_{\text{wheel, d}} = 0.992 \text{ rad/sec}^2
\]

Calculate the factor of safety on motor torque:

\[
T_{\text{Dekker, reqd}} := J_{\text{total, d}} \cdot \alpha_{\text{motor, d}}
\]
\[
T_{\text{Dekker, reqd}} = 5.362 \times 10^{-3} \text{ N.m}
\]
\[
FS_{\text{torque, Dekker}} := \frac{T_{\text{MotorMax}} - \left(\frac{T_{\text{detent, d}} + T_{\text{bearing, total}}}{N_f D^2 E_{w, d}} \right)}{T_{\text{Dekker, reqd}}}
\]
\[
FS_{\text{torque, Dekker}} = 59.257
\]
Calculate positioning time period:

\[\omega_{\text{in}_d} := 0. \text{ rev} \min \]

\[\omega_{w_d_{\text{final}}} := \frac{N_{\text{motor}_\max}}{N_f_D} \quad \omega_{w_d_{\text{final}}} = 0.174 \text{ \frac{1}{s}} \]

\[\omega_{m_d_{\text{final}}} := N_{\text{motor}_\max} \quad \omega_{m_d_{\text{final}}} = 31.416 \text{ \frac{1}{s}} \]

\[\text{time}_{\text{accel}_d} := \frac{(\omega_{m_d_{\text{final}}} - \omega_{\text{in}_d})}{\alpha_{\text{motor}_d}} \quad \text{time}_{\text{accel}_d} = 0.175 \text{ s} \]

\[\text{time}_{\text{position}_d} := \frac{(\text{Position}_\text{Angle} \cdot N_f_D)}{N_{\text{motor}_\max}} + \text{time}_{\text{accel}_d} \quad \text{time}_{\text{position}_d} = 18.275 \text{ s} \]

Calculate Inertia ratio:

\[J_{\text{ratio}_d} := \frac{J_{\text{eq}_d}}{J_{\text{motor}}} \quad J_{\text{ratio}_d} = 0.99 \]
MOS Wheel Repeatability

Runout Assumptions

\[B_1 = \pm 0.0002" \]
\[B_2 = \pm 0.0002" \]
\[B_3 = \pm 0.0002" \]

From \(B_1 \)

Runout in \(x \) direction results in tilt of slit.

\[\theta = \text{inum} \quad \frac{0.0002\text{ in}}{7.5043\text{ in}} \]
\[\theta = 0.001206^\circ \]

\[\delta_y = (\sin 0.001206)(8.920\text{ in}) \]
\[\delta_y = 0.000188\text{ in} \]

\[\delta_x = \text{assumed simple translation} \]
\[\delta_x = 0.0002\text{ in} \]

From \(B_2 \)

Runout in \(y \) direction - no change - spurt on cone.

Runout in \(x \) direction - same tilt as \(B_1 \) \(x \) direction results.

From \(B_3 \)

Runout in \(y \) direction - no change.

Runout in \(x \) direction - same tilt as \(B_1 \) \(x \) direction results.
<table>
<thead>
<tr>
<th>Bearing</th>
<th>MOS Summary</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bearing</td>
<td>δ_x</td>
<td>δ_y</td>
</tr>
<tr>
<td>B_1</td>
<td>in x</td>
<td>± 0.002</td>
<td>± 0.000188</td>
</tr>
<tr>
<td></td>
<td>in y</td>
<td>0</td>
<td>± 0.002</td>
</tr>
<tr>
<td>B_2</td>
<td>in x</td>
<td>± 0.002</td>
<td>± 0.000188</td>
</tr>
<tr>
<td></td>
<td>in y</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B_3</td>
<td>in x</td>
<td>± 0.002</td>
<td>± 0.000188</td>
</tr>
<tr>
<td></td>
<td>in y</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

RSS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>± 0.00346 in</td>
<td>± 0.00382 in</td>
<td></td>
</tr>
<tr>
<td>8.8 mm</td>
<td>9.7 mm</td>
<td></td>
</tr>
</tbody>
</table>
FROM B,

<table>
<thead>
<tr>
<th>B1 x direction</th>
<th>(\delta_x)</th>
<th>(\delta_y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0002</td>
<td>0.000183</td>
<td></td>
</tr>
<tr>
<td>B1 y direction</td>
<td>0</td>
<td>0.0002</td>
</tr>
<tr>
<td>B2 x direction</td>
<td>0.0002</td>
<td>0.000183</td>
</tr>
<tr>
<td>B2 y direction</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B3 x direction</td>
<td>0.0002</td>
<td>0.000183</td>
</tr>
<tr>
<td>B3 y direction</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Sigma_{i})</td>
<td>(\pm 0.00382 \text{ in})</td>
<td>(\pm 0.00382 \text{ in})</td>
</tr>
<tr>
<td></td>
<td>8.8 \text{ mm}</td>
<td>9.7 \text{ mm}</td>
</tr>
</tbody>
</table>
MMIRS

Guider/WFS Mechanism Calculations

Constants:

\[
\text{arcmin} := \left(\frac{1}{60}\right) \text{deg} \quad \text{arcsec} := \left(\frac{1}{3600}\right) \text{deg} \quad \text{ozf} := \text{g} \cdot \text{oz}
\]

\[
\text{hz} := \text{sec}^{-1} \quad \text{rev} := 2 \pi \text{rad} \quad \text{deg} = 0.017
\]

\[
\text{rpm} := \frac{\text{rev}}{\text{min}} \quad g = 9.807 \text{ m s}^{-2}
\]

Specifications: MMIRS F&P:

The Guider X and Z axis stages must meet the following specs:

Mechanism_Repeatability := 200 \left(10^{-6}\right) \text{m}

Encoder_Resolution := 10 \left(10^{-6}\right) \text{m}

Mechanism required move time is (WFS move times per Brian 9/9/04 email):

\[
\text{Time}_{\text{move Reqd}} := 30 \text{sec} \quad \text{Time}_{\text{move Desired}} := 10 \text{sec}
\]

\[
\text{Time}_{\text{move WFS Reqd}} := 10 \text{sec} \quad \text{Time}_{\text{move WFS Desired}} := 5 \text{sec}
\]

Minimum Factor of Safety on motor torque is to be:

\[
\text{FS}_{\text{torque}} := 2.5
\]
Guider Horizontal "X" Stage Calculations:

From I-deas modelling as of 4-21-05 the moveable mass on this stage and travel requirements are:

\[
\text{Mass}_{\text{Guider}X} := 17.39\,\text{kg}
\]

\[
\text{Travel}_X := 140\,\text{mm}
\]

Since this mass will be moved by a ball screw, calculate the force to turn the screw with the mass loaded in the gravity direction.

For the "YX" Stage ball screw:

\[
\text{lead} := 6.0 \frac{\text{mm}}{\text{rev}}
\]

Distance the load moves per revolution of the screw

\[
E_{bs} := .9
\]

Ball Screw Efficiency

\[
\mu_{bs} := .3
\]

Ball Screw Friction coefficient

Torque to overcome gravity:

\[
\text{Force} := \text{Mass}_{\text{Guider}X} \cdot g
\]

Force = 170.538 N

\[
T_{X\text{gravity}} := \frac{(\text{Force} \cdot \text{lead})}{(E_{bs})}
\]

\[
T_{X\text{gravity}} = 0.181\,\text{N}\cdot\text{m}
\]

Screw Friction Torque (from preload). Assume the preload force is 30% of the load force:

\[
\text{Force}_{\text{preload}} := 0.3 \cdot \text{Force}
\]

\[
T_{X\text{preload}} := \left(\text{Force}_{\text{preload}} \cdot \text{lead} \cdot \mu_{bs}\right)
\]

\[
T_{X\text{preload}} = 0.015\,\text{N}\cdot\text{m}
\]

Calculate the torque required to accelerate the load assuming a reasonable linear acceleration:

\[
a_{\text{linear}} := 0.025 \cdot g
\]

\[
a_{\text{linear}} = 0.245 \frac{\text{m}}{\text{s}^2}
\]

\[
T_{X_\text{Acc_load}} := \frac{T_{X\text{gravity}} \cdot a_{\text{linear}}}{g}
\]

\[
T_{X_\text{Acc_load}} = 4.524 \times 10^{-3}\,\text{N}\cdot\text{m}
\]
Calculate inertia of leadscrew:

\[
\rho_{ss} := 7920 \frac{kg}{m^3}
\]

\[
D_{ls} := 0.01 m
\]

\[
L_{ls} := 0.325 m
\]

\[
J_{ls} := \frac{\pi}{32} \rho_{ss} L_{ls} D_{ls}^4
\]

\[
J_{ls} = 2.527 \times 10^{-6} \text{ kg m}^2
\]

Stepper Motor Specifications: Phytron ZSS 52 w/ gearhead and brake:

\[
\text{MotorSteps} := 200 \text{ rev}
\]

\[
J_{motor} := 0.15 \text{ kg cm}^2
\]

\[
T_{\text{rated peak}} := 0.45 \text{ N m}
\]

Phytron ZSS 52.200. at 70V and:
1400rpm, \(T = 0.22 \text{ Nm}\)
1094rpm \(T = 0.245 \text{ Nm}\)
910rpm \(T = 0.266 \text{ Nm}\)
700rpm \(T = 0.283 \text{ Nm}\)

\[
T_{\text{rated continuous}} := 0.245 \text{ N m}
\]

From Phytron single stage planetary gearhead data:

\[
\eta_{gh} := 0.96
\]

\[
J_{gh} := 0.06 \text{ kg cm}^2
\]

\[
N_{gh} := 6.25
\]

\[
T_{gh _Max _Rated} := 1.5 \text{ N m}
\]

From Phytron telecon (Wahid) 4-25-05:

\[
J_{brake} := 0.021 \text{ kg cm}^2
\]

\[
T_{Brake _Rated} := 0.7 \text{ N m}
\]
Calculate "X" Stage step size:

\[
\text{StepSize}_X := \frac{\text{lead}}{\text{MotorSteps} \cdot N_{gh}} \quad \text{StepSize}_X = 4.8 \times 10^{-6} \text{ m}
\]

From THK General Catalog, for KR33, precision grade LM Guide (p. E-17):

\[
\text{Repeatability}_{\text{Stage}_X} := .003 \text{ mm}
\]

Calculate total stage positioning repeatability:

\[
\text{Repeatability}_{\text{Total}_X} := \text{StepSize}_X + \text{Repeatability}_{\text{Stage}_X} \quad \text{Repeatability}_{\text{Total}_X} = 7.8 \times 10^{-6} \text{ m}
\]

Calculate the ballscrew rotational acceleration:

\[
\alpha := \frac{a_{\text{linear}}}{\text{lead}} \quad \alpha = 256.737 \text{ rad/s}^2
\]

Calculate the required stage speed assuming the desired positioning time of the "Y" stage (from the F&P):

- Assume that the acceleration time is 20% of the positioning period and the deceleration time equals the acceleration time.

\[
\text{time}_{\text{accelerating}} := 0.2 \cdot \text{time}_{\text{move}_\text{Desired}} \quad \text{time}_{\text{accelerating}} = 2 \text{ s}
\]

\[
\text{time}_{\text{constant}} := \text{time}_{\text{move}_\text{Desired}} - 2 \cdot \text{time}_{\text{accelerating}} \quad \text{time}_{\text{constant}} = 6 \text{ s}
\]

\[
\text{accel} := \frac{\text{Travel}_X}{\text{time}_{\text{accelerating}}^2 + \left(\text{time}_{\text{accelerating}} \cdot \text{time}_{\text{constant}}\right)} \quad \text{accel} = 8.75 \times 10^{-3} \frac{\text{m}}{\text{s}^2}
\]

\[
V_{\text{cont}} := \text{accel} \cdot \text{time}_{\text{accelerating}} \quad V_{\text{cont}} = 0.018 \frac{\text{m}}{\text{s}}
\]

\[
\omega_{\text{Screw Required}} := \frac{V_{\text{cont}}}{\text{lead}} \quad \omega_{\text{Screw Required}} = 175 \text{ rpm}
\]
Calculate the required motor speed, torque and torque factor of safety:

\[
\omega_{\text{motor}} := \frac{\omega_{\text{Screw Required}} \cdot N_{\text{gh}}}{N_{\text{gh}} \cdot \eta_{\text{gh}}} \]

\[
\alpha_{\text{motor}} := \frac{N_{\text{gh}} \cdot \eta_{\text{gh}}}{N_{\text{gh}} \cdot \eta_{\text{gh}}} \]

\[
\omega_{\text{motor}} = 1.094 \times 10^3 \text{ rpm} \]

\[
\alpha_{\text{motor}} = 1.605 \times 10^3 \text{ rad/sec}^2 \]

Calculate Peak motor torque required:

\[
T_{X_{\text{Motor Peak}}} := \alpha_{\text{motor}} \left(J_{\text{motor}} + J_{\text{brake}} + J_{\text{gh}} + \frac{J_{\text{ls}}}{N_{\text{gh}} \cdot \eta_{\text{gh}}} \right) + \left(\frac{T_{X_{\text{gravity}}} + T_{X_{\text{preload}}} + T_{X_{\text{Acc_load}}}}{N_{\text{gh}} \cdot \eta_{\text{gh}}} \right) \]

\[
T_{X_{\text{Motor Peak}}} = 0.071 \text{ N\cdotm} \]

\[
FS_{X_{\text{Motor Peak}}} := \frac{T_{\text{rated peak}}}{T_{X_{\text{Motor Peak}}}} \]

\[
FS_{X_{\text{Motor Peak}}} = 6.38 \]

Calculate Continuous motor torque required:

\[
T_{X_{\text{Motor Req'd Cont}}} := \frac{T_{X_{\text{gravity}}} + T_{X_{\text{preload}}}}{N_{\text{gh}} \cdot \eta_{\text{gh}}} \]

\[
T_{X_{\text{Motor Req'd Cont}}} = 0.033 \text{ N\cdotm} \]

\[
FS_{\text{Motor Torque Cont}} := \frac{T_{\text{rated continuous}}}{T_{X_{\text{Motor Req'd Cont}}} \}

\[
FS_{\text{Motor Torque Cont}} = 7.515 \]

Calculate the gearhead factor of safety:

\[
FS_{\text{Gearhead}} := \frac{T_{\text{gh Max Rated}}}{T_{X_{\text{Motor Req'd Cont}}} \}

\[
FS_{\text{Gearhead}} = 46.012 \]
Calculate backdriving torque due to load:

\[T_{\text{Backdriving}} := \frac{(\text{Force} \cdot \text{lead} \cdot E_{bs})}{(N_{gh} \cdot \eta_{gh})} \]

\[T_{\text{Backdriving}} = 0.024 \, \text{N} \cdot \text{m} \]

Calculate Brake Factor of Safety:

\[F_{S_{\text{Brake}}} := \frac{T_{\text{Brake Rated}}}{T_{\text{Backdriving}}} \]

\[F_{S_{\text{Brake}}} = 28.656 \]
Guider Vertical "Z" Stage:

From I-deas modelling as of 4-21-05 the moveable mass on this stage and travel requirements are:

\[
\text{Mass}_{\text{GuiderZ}} := 11.06 \text{kg}
\]
\[
\text{Travel}_Z := 70 \text{mm}
\]

Since this mass will be moved by a ball screw, calculate the force to turn the screw with the mass loaded in the gravity direction.

For the "Z" Stage leadscrew:

\[
\text{lead}_Z := 6.0 \frac{\text{mm}}{\text{rev}}
\]

Distance the load moves per revolution of the screw

Torque to overcome gravity:

\[
\text{Force}_Z := \text{Mass}_{\text{GuiderZ}} \cdot g
\]
\[
\text{Force}_Z = 108.462 \text{N}
\]
\[
\text{TZ}_{\text{gravity}} := \frac{\left(\text{Force}_Z \cdot \text{lead}_Z\right)}{\left(\mu_{\text{bs}}\right)}
\]
\[
\text{TZ}_{\text{gravity}} = 0.115 \text{N} \cdot \text{m}
\]

Screw Friction Torque (from preload). Assume the preload force is 30% of the load force:

\[
\text{Force}_{\text{preload}} := 0.3 \cdot \text{Force}_Z
\]
\[
\text{TZ}_{\text{preload}} := \left(\text{Force}_{\text{preload}} \cdot \text{lead}_Z \cdot \mu_{\text{bs}}\right)
\]
\[
\text{TZ}_{\text{preload}} = 9.322 \times 10^{-3} \text{N} \cdot \text{m}
\]

Calculate the torque required to accelerate the load assuming a reasonable linear acceleration:

\[
a_{\text{linear}_Z} := 0.025 \cdot g
\]
\[
a_{\text{linear}_Z} = 0.245 \frac{\text{m}}{\text{s}^2}
\]
\[
\text{TZ}_{\text{Acc_load}} := \frac{\text{TZ}_{\text{gravity}} \cdot a_{\text{linear}_Z}}{g}
\]
\[
\text{TZ}_{\text{Acc_load}} = 2.877 \times 10^{-3} \text{N} \cdot \text{m}
\]
Calculate inertia of leadscrew:

\[
\text{Dia}_{ls_Z} := .01\text{m}
\]
\[
\text{L}_{ls_Z} := .235\text{m}
\]
\[
J_{ls_Z} := \frac{\pi}{32} \rho_{ss} \text{L}_{ls_Z} \text{Dia}_{ls_Z}^4
\]

\[
J_{ls_Z} = 1.827 \times 10^{-6} \text{kg m}^2
\]

The motor / gearhead / brake is a Phytron 52 (the same as the "X" stage):

Calculate "Z" Stage step size:

\[
\text{StepSize}_Z := \frac{\text{lead}_Z}{\text{MotorSteps} \times N_{gh}}
\]

\[
\text{StepSize}_Z = 4.8 \times 10^{-6} \text{m}
\]

From THK General Catalog, for KR33, precision grade LM Guide (p. E-17):

\[
\text{Repeatability}_{Stage_Z} := .003\text{mm}
\]

Calculate total stage positioning repeatability:

\[
\text{Repeatability}_{Total_Z} := \text{StepSize}_Z + \text{Repeatability}_{Stage_Z}
\]

\[
\text{Repeatability}_{Total_Z} = 7.8 \times 10^{-6} \text{m}
\]
Calculate the ballscrew rotational acceleration:

\[\alpha_z := \frac{a_{\text{linear}_z}}{\text{lead}_Z} \]
\[\alpha_z = \frac{256.737}{s^2} \text{ rad} \]

Calculate the required stage speed assuming the desired positioning time of the "Z" stage (from the F&P):

- Assume that the acceleration time is 20\% of the positioning period and the deceleration time equals the acceleration time.

\[\text{accel}_z := \frac{\text{Travel}_Z}{\text{time}_{\text{accelerating}}^2 + \left(\text{time}_{\text{accelerating}} \cdot \text{time}_{\text{constant}}\right)} \]
\[\text{accel}_z = 4.375 \times 10^{-3} \text{ m/s}^2 \]

\[\text{V}_{\text{cont}_z} := \text{accel}_z \cdot \text{time}_{\text{accelerating}} \]
\[\text{V}_{\text{cont}_z} = 8.75 \times 10^{-3} \text{ m/s} \]

\[\omega_{\text{Screw Required}_Z} := \frac{\text{V}_{\text{cont}_z}}{\text{lead}_Z} \]
\[\omega_{\text{Screw Required}_Z} = 87.5 \text{ rpm} \]

Calculate the required motor speed, torque and torque factor of safety:

\[\omega_{\text{motor}_z} := \omega_{\text{Screw Required}_Z} \cdot \text{Ngh} \]
\[\omega_{\text{motor}_z} = 546.875 \text{ rpm} \]

\[\alpha_{\text{motor}_z} := \alpha_z \cdot \text{Ngh} \]
\[\alpha_{\text{motor}_z} = 1.605 \times 10^3 \text{ rad/s}^2 \]

Calculate Peak motor torque required:

\[T_{\text{Z Motor Peak}} := \alpha_{\text{motor}_z} \left(J_{\text{motor}} + J_{\text{brake}} + J_{\text{gh}} + \frac{J_{\text{ls}_Z}}{\text{Ngh}^2 \cdot \eta_{\text{gh}}} \right) + \left(T_{\text{Z gravity}} + T_{\text{Z preload}} + T_{\text{Z Acc load}} \right) \]
\[T_{\text{Z Motor Peak}} = 0.058 \text{ N\cdotm} \]

\[\text{FSZ Motor Peak} := \frac{T_{\text{rated peak}}}{T_{\text{Z Motor Peak}}} \]
\[\text{FSZ Motor Peak} = 7.711 \]
Calculate Continuous motor torque required:

\[
TZ_{\text{Motor}_\text{Reqd}_\text{Cont}} := \frac{T_{Z_{\text{gravity}} + T_{Z_{\text{preload}}}}}{N_{gh} \cdot \eta_{gh}}
\]

\[
TZ_{\text{Motor}_\text{Reqd}_\text{Cont}} = 0.021 \text{ N\cdot m}
\]

\[
FSZ_{\text{Motor}_\text{Cont}} := \frac{T_{\text{rated_continuous}}}{TZ_{\text{Motor}_\text{Reqd}_\text{Cont}}}
\]

\[
FSZ_{\text{Motor}_\text{Cont}} = 11.816
\]

Calculate the gearhead factor of safety:

\[
FS_{\text{Gearhead}_Z} := \frac{T_{gh_Max_Rated}}{TZ_{\text{Motor}_\text{Reqd}_\text{Cont}}}
\]

\[
FS_{\text{Gearhead}_Z} = 72.346
\]

Calculate backdriving torque due to load:

\[
T_{\text{Backdriving}_Z} := \frac{(\text{Force}_Z\cdot \text{lead}_Z\cdot E_{bs})}{N_{gh} \cdot \eta_{gh}}
\]

\[
T_{\text{Backdriving}_Z} = 0.016 \text{ N\cdot m}
\]

Calculate Brake Factor of Safety:

\[
FS_{\text{Brake}_Z} := \frac{T_{\text{Brake_Rated}}}{T_{\text{Backdriving}_Z}}
\]

\[
FS_{\text{Brake}_Z} = 45.057
\]
Guider Wave Front Sensor Stage:

From I-deas modelling as of 4-21-05 the moveable mass on this stage and travel requirements are:

\[
\text{Mass}_{\text{WFS}} := 1.5\text{kg} \quad \text{Model shows 0.9 kg - 50\% factor applied.}
\]

\[
\text{Travel}_{\text{WFS}} := 40\text{mm}
\]

Since this mass will be moved by a ball screw, calculate the force to turn the screw with the mass loaded in the gravity direction.

For the WFS Stage leadscrew:

\[
\text{lead}_{\text{WFS}} := 6.0\frac{\text{mm}}{\text{rev}} \quad \text{Distance the load moves per revolution of the screw}
\]

Torque to overcome gravity:

\[
\text{Force}_{\text{WFS}} := \text{Mass}_{\text{WFS}} \cdot g
\]

\[
T_{\text{WFSgrav}} := \left(\frac{\text{Force}_{\text{WFS}} \cdot \text{lead}_{\text{WFS}}}{E_{\text{bs}}} \right)
\]

\[
\text{Force}_{\text{WFS}} = 14.71\text{N}
\]

\[
T_{\text{WFSgrav}} = 0.016\text{N} \cdot \text{m}
\]

Screw Friction Torque (from preload). Assume the preload force is 30\% of the load force:

\[
\text{Force}_{\text{preloadWFS}} := 0.3 \cdot \text{Force}_{\text{WFS}}
\]

\[
T_{\text{WFSpreload}} := \left(\text{Force}_{\text{preloadWFS}} \cdot \text{lead}_{\text{WFS}} \cdot \mu_{\text{bs}} \right)
\]

\[
T_{\text{WFSpreload}} = 1.264 \times 10^{-3}\text{N} \cdot \text{m}
\]

Calculate the torque required to accelerate the load assuming a reasonable linear acceleration:

\[
a_{\text{linear}_{\text{WFS}}} := 0.025\cdot g
\]

\[
a_{\text{linear}_{\text{WFS}}} = 0.245\frac{\text{m}}{\text{s}^2}
\]

\[
T_{\text{WFS_Acc_load}} := \frac{T_{\text{WFSgrav}} \cdot a_{\text{linear}_{\text{WFS}}}}{g}
\]

\[
T_{\text{WFS_Acc_load}} = 3.902 \times 10^{-4}\text{N} \cdot \text{m}
\]
Calculate inertia of leadscrew:

\[\text{Dia}_{ls_WFS} := .01\text{m} \]
\[\text{L}_{ls_WFS} := .150\text{m} \]
\[J_{ls_WFS} := \frac{\pi}{32} \cdot \rho_{ss} \cdot \text{L}_{ls_WFS} \cdot \text{Dia}_{ls_WFS}^4 \]
\[J_{ls_WFS} = 1.166 \times 10^{-6} \text{kgm}^2 \]

The motor / gearhead / brake is a Phytron 52 (the same as the "X" stage):

Calculate "WFS" Stage step size:

\[\text{StepSize}_{WFS} := \frac{\text{lead}_{WFS}}{\text{MotorSteps}\cdot\text{N}_{gh}} \]
\[\text{StepSize}_{WFS} = 4.8 \times 10^{-6} \text{m} \]

From THK General Catalog, for KR30H, precision grade LM Guide (p. E-17):

\[\text{Repeatability}_{Stage_WFS} := .003\text{mm} \]

Calculate total stage positioning repeatability:

\[\text{Repeatability}_{Total_WFS} := \text{StepSize}_{WFS} + \text{Repeatability}_{Stage_WFS} \]
\[\text{Repeatability}_{Total_WFS} = 7.8 \times 10^{-6} \text{m} \]

Torque required to accelerate the leadscrew, motor and brake is:

\[\alpha_{WFS} := \frac{a_{\text{linear_WFS}}}{\text{lead}_{WFS}} \]
\[\alpha_{WFS} = 256.737 \text{rad sec}^{-2} \]
Calculate the required stage speed assuming the desired positioning time of the "WFS" stage (from the F&P):

- Assume that the acceleration time is 20% of the positioning period and the deceleration time equals the acceleration time.

\[
\text{accel}_{\text{WFS}} := \frac{\text{Travel}_{\text{WFS}}}{\text{time}_{\text{accelerating}}^2 + \left(\text{time}_{\text{accelerating}} \cdot \text{time}_{\text{constant}}\right)}
\]

\[
\Rightarrow \text{cel}_{\text{WFS}} = 2.5 \times 10^{-3} \, \text{m/s}^2
\]

\[
\text{V}_{\text{cont.} \text{WFS}} := \text{accel}_{\text{WFS}} \cdot \text{time}_{\text{accelerating}}
\]

\[
\Rightarrow \text{V}_{\text{cont.} \text{WFS}} = 5 \times 10^{-3} \, \text{m/s}
\]

\[
\omega_{\text{Screw Required_WFS}} := \frac{\text{V}_{\text{cont.} \text{WFS}}}{\text{lead}_{\text{WFS}}}
\]

\[
\Rightarrow \omega_{\text{Screw Required_WFS}} = 50 \, \text{rpm}
\]

Calculate the required motor speed, torque and torque factor of safety:

\[
\omega_{\text{motor_WFS}} := \omega_{\text{Screw Required_WFS}} \cdot \text{N}_{\text{gh}}
\]

\[
\Rightarrow \omega_{\text{motor_WFS}} = 312.5 \, \text{rpm}
\]

\[
\alpha_{\text{m_WFS}} := \alpha_{\text{WFS}} \cdot \text{N}_{\text{gh}}
\]

\[
\Rightarrow \alpha_{\text{m_WFS}} = 1.605 \times 10^3 \, \text{rad/sec}^2
\]

Calculate Peak motor torque required and torque factor of safety:

\[
\text{T}_{\text{WFS Peak}} := \alpha_{\text{m_WFS}} \left(J_{\text{motor}} + J_{\text{brake}} + J_{\text{gh}} + \frac{J_{\text{ls_WFS}}}{\text{N}_{\text{gh}} \cdot \text{N}_{\text{gh}}^2} \right) + \left(\frac{\text{T}_{\text{WFS grav}} + \text{T}_{\text{WFS Preload}} + \text{T}_{\text{WFS Acc load}}}{\text{N}_{\text{gh}} \cdot \text{N}_{\text{gh}}} \right) \left(\text{N}_{\text{gh}} \cdot \text{N}_{\text{gh}} \right)
\]

\[
\Rightarrow \text{T}_{\text{WFS Peak}} = 0.04 \, \text{N-m}
\]

\[
\text{FS}_{\text{WFS Motor Peak}} := \frac{\text{T}_{\text{rated peak}}}{\text{T}_{\text{WFS Peak}}}
\]

\[
\Rightarrow \text{FS}_{\text{WFS Motor Peak}} = 11.252
\]
Calculate the Continuous motor torque required and torque factor of safety:

\[
TWFS_Motor_Reqd_Cont := \frac{TWFS\text{grav} + TWFS\text{preload}}{(Ngh\cdot\eta_{gh})}
\]

\[
TWFS_Motor_Reqd_Cont = 2.812 \times 10^{-3} \text{ N}\cdot\text{m}
\]

\[
FS_{WFS_Motor_Cont} := \frac{T\text{rated_continuous}}{TWFS_Motor_Reqd_Cont}
\]

\[
FS_{WFS_Motor_Cont} = 87.127
\]

Calculate the gearhead factor of safety:

\[
FSGearhead_WFS := \frac{T_{gh_Max_Rated}}{TWFS_Motor_Reqd_Cont}
\]

\[
FSGearhead_WFS = 533.428
\]

Calculate backdriving torque due to load:

\[
T_{Backdriving_WFS} := \frac{(\text{ForceWFS\cdotleadWFS}\cdot F_{bs})}{(Ngh\cdot\eta_{gh})}
\]

\[
T_{Backdriving_WFS} = 2.107 \times 10^{-3} \text{ N}\cdot\text{m}
\]

Calculate Brake Factor of Safety:

\[
FS_{Brake_WFS} := \frac{T_{Brake_Rated}}{T_{Backdriving_WFS}}
\]

\[
FS_{Brake_WFS} = 332.218
\]
Camera Focus Stage:

Calculate the camera focus stage resolution required knowing the camera pixel size and guide camera f#. From the geometry on part mmirs9, the Fnumber is calculated (between 3 and 3.28):

\[
\text{Fnumber} := 3.28\text{deg}
\]

\[
\text{Pixel}_\text{Size}_{\text{CCD}} := 13\left(10^{-6}\right)\text{m} \ *
\]

\[
\text{DepthofFocus} := \left(\frac{\text{Pixel}_\text{Size}_{\text{CCD}}}{2}\right) \tan(\text{Fnumber})
\]

\[
\text{DepthofFocus} = 4.465 \times 10^{-3} \text{ in}
\]

Required resolution of camera focus stage is:

\[
\text{Res}_{\text{Camera}_\text{Reqd}} := \frac{\text{DepthofFocus}}{2}
\]

\[
\text{Res}_{\text{Camera}_\text{Reqd}} = 2.233 \times 10^{-3} \text{ in}
\]

\[
\text{Res}_{\text{Camera}_\text{Reqd}} = 5.671 \times 10^{-5} \text{ m}
\]

Specifications: MMIRS F&P:

The Camera Focus axis stage must meet the following specs:

\[
\text{Mechanism}_\text{Repeatability}_{\text{Camera}} := 40\left(10^{-6}\right)\text{m}
\]

\[
\text{Encoder}_\text{Resolution}_{\text{Camera}} := 25\left(10^{-6}\right)\text{m} \ *
\]
From I-deas modelling as of 4-21-05 the moveable mass on this stage and travel requirements are:

\[
\text{Mass}_{\text{Camera}} := 1.7\text{kg}
\]
\[
\text{Travel}_{\text{Camera}} := 2\text{mm}
\]

Phytron ZSS 52 motor ratings:

\[
F_{\text{Bearing_Radial_gh}} := 250\text{N}
\]

Using a cam determine the travel size of one motor step.

\[
\text{CamTravel_per_Step} := \frac{\text{Travel}_{\text{Camera}} \cdot 360 \text{ deg}}{\text{rev}} \cdot \frac{\text{MotorSteps} \cdot (330 \text{deg})}{N_{\text{gh}}} \cdot * \quad \text{CamTravel_per_Step} = 1.745 \times 10^{-6} \text{m}
\]

The step size results in a step travel of "Factor" greater than the camera focus repeatability requirement.

\[
\text{Factor} := \frac{\text{Mechanism_Repeatability_Camera}}{\text{CamTravel_per_Step}} \quad \text{Factor} = 22.917
\]

Calculate the focus stage minimum motor speed:

\[
\omega_{\text{focus_motor}} := \frac{(330 \text{deg}) \cdot N_{\text{gh}}}{\text{Time}_{\text{move_Desired}}} \cdot * \quad \omega_{\text{focus_motor}} = 34.375 \text{rpm}
\]

The ramp angle of the cam is:

\[
\theta := \text{atan} \left[\frac{\text{2mm}}{\pi \cdot (2.25.4 \text{mm} \cdot \frac{330}{360})} \right] \cdot * \quad \theta = 0.783 \text{deg}
\]
Assuming the springs pull the camera against the cam with 5g's of force, determine the factor of safety on the motor bearing radial rating and the factor of safety on backdriving torque vs. the brake rating:

\[\text{Force}_{\text{Camera}} := 5 \cdot g \cdot \text{Mass}_{\text{Camera}} \]

\[\text{FS}_{\text{Bearing _ Radial}} := \frac{\text{F}_{\text{Bearing _ Radial _ gh}}}{\text{Force}_{\text{Camera}}} \]

\[\text{Radius}_{\text{Camera _ CamMax}} := 27.4 \text{mm} \]

\[\text{Backdriving _ Torque}_{\text{Camera}} := \frac{\left(\text{Force}_{\text{Camera}} \cdot \sin(\theta) \cdot \text{Radius}_{\text{Camera _ CamMax}} \right)}{\left(N \cdot gh \cdot n_{gh} \right)} \times \]

\[\text{FS}_{\text{Camera _ Torque}} := \frac{T_{\text{Brake _ Rated}}}{\text{Backdriving _ Torque}_{\text{Camera}}} \]

\[\text{Force}_{\text{Camera}} = 83.357 \text{N} \]

\[\text{FS}_{\text{Bearing _ Radial}} = 2.999 \]

\[\text{Backdriving _ Torque}_{\text{Camera}} = 5.204 \times 10^{-3} \text{ N \cdot m} \]

\[\text{FS}_{\text{Camera _ Torque}} = 134.522 \]
Calculate MOS Long Slit widths based on specifications in F&PR and MOS Section Spec.:\[\text{arcminute} := \frac{\text{1deg}}{60}\]

\[\text{MOS_Slit_Width} := 69.14\text{mm}\]

\[\text{MOS_Slit_Angle} := 7\text{arcminute}\quad \text{MOS_Slit_Angle} = 0.117\text{deg}\]

\[\text{Plate_Scale} := \frac{\text{MOS_Slit_Width}}{\text{MOS_Slit_Angle}}\quad \text{Plate_Scale} = 9.877\frac{\text{mm}}{\text{arcminute}}\]

\[\text{Detector_Pixel_Size} := 18\left(10^{-6}\right)\text{m}\]

\[\text{Detector_Pixels} := 2048\]

\[\text{Detector_Width} := \text{Detector_Pixels}\cdot\text{Detector_Pixel_Size}\quad \text{Detector_Width} = 36.864\text{mm}\]

\[\text{Optical_Magnification} := \frac{\text{Detector_Width}}{\text{MOS_Slit_Width}}\quad \text{Optical_Magnification} = 0.533\]

\[\text{Pixels} := 1, 2, ..., 12\]

\[\text{Slit_Width(Pixels)} := \frac{(\text{Pixels}\cdot\text{Detector_Pixel_Size})}{\text{Optical_Magnification}}\quad \text{Slit_Width(Pixels)} = \begin{array}{c}
1.3291\cdot10^{-3} \\
2.6582\cdot10^{-3} \\
3.9874\cdot10^{-3} \\
5.3165\cdot10^{-3} \\
6.6456\cdot10^{-3} \\
7.9747\cdot10^{-3} \\
9.3039\cdot10^{-3} \\
0.0106 \\
0.012 \\
0.0133 \\
0.0146 \\
0.0159
\end{array}\text{ in}\]
Section IV.

Camera Section Design

1. Camera Specifications
2. Camera Section Mechanical Design
3. Camera Design Supporting Calculations
4. Cryostat Optics Mounting System
5. Collimator and Camera Lens Mount Calculations
MMIRS CAMERA SECTION SPECIFICATIONS

S-MMIRS-203

George Nystrom
February 23, 2004

Updated May 27, 2004 by GN [PDR version]
Updated June 6, 2004 by GN
Updated May 2, 2005 by PM [reformatted, minor edits]

100 Introduction
The Camera Section is composed of the sub-assemblies specified below. The MMIRS Functional and Performance Requirements (F&P) document (S-MMIRS-200) is the Camera Section’s controlling document. If there are any discrepancies between the F&P and this document, the F&P shall prevail.

The Camera Section structural assembly (or optical bench) provides the structural attachment points for two lens assemblies, a grism wheel, two filter wheels, an IR array detector mount, and an LN2 reservoir and feedthroughs. The Camera Section also includes a vacuum enclosure, thermal shields, and electrical interface connectors. The warm bulkhead is the structural interface to the MOS Section and the MMIRS telescope mounting truss.

The following F&P requirements and specifications are particularly relevant to the Camera Section:

1. Section 100—Optical Requirements
2. Section 300—Mechanical Requirements
3. Section 400—Electrical and Electronic Requirements
4. Section 600—Observatory Physical Interface
5. Section 700 – Environmental Requirements
6. Section 800—Other requirements

Note also that the Camera Section must meet the rigidity specifications for the MMIRS instrument when combined with the MOS Section.

200 Vacuum integrity
The Camera Section shall be leak tight to less than 5×10^{-6} STD cc of helium/sec. Proper material selection and cleanliness during assembly must be exercised to minimize contamination due to outgassing. All enclosed volumes, such as tapped holes, must be vented.

300 Axes definitions
The optical axes are defined as follows: Z axis is along the optical axis with –Z towards the detector, Y is the elevation axis, and X is the azimuth axis. These axis definitions apply only when the telescope rotator is at the “0” position.
400 Optics

The Camera Section positions and holds lens 3 –14. The lens positions are shown on MMIRS optical diagram MMIRS -100. The following specifications must be satisfied for the optical elements:

1. Positioning is per the MMIRS Optical Specifications.
2. Temperature range: 300 to 80 ± 3 degrees Kelvin.
3. Pressure: One atmosphere to 1 times 10^{-7} Torr.
4. Mounting:
 - Lens cells must not distort the optic by either thermal or mechanical stressing. The allowable lens stress level must not exceed ± 200 psi. All lenses or lens combinations shall be mounted in a cell that allows for their removal. A spacer is required between all lens cells for setting their inter-optic spacing.
5. Maximum lens cooling rate: See Table 1 below.
6. Stray light baffles:
 - Baffles to reduce stray light are required. Refer to the optic diagram MMIRS-100, sheet 3 of for their size and positioning.
7. Venting:
 - The lens cell shall provide an evacuation path for all internal cavities, which shall not allow external illumination to enter directly.

500 Filter and Grism wheels

The two Filter Wheels are used to introduce various spectral filters into the optical beam. The Grism Wheel is used to place a series of grisms into the beam to disperse objects onto the IR array.

510 Filter Wheels

There shall be two identical Filter Wheels having six positions: Five of these positions shall have filters and the sixth shall be an open aperture. The filters are 125 mm in diameter and 5-10 mm thick.

520 Grism Wheel

The Grism Wheel shall have 6 positions and will carry 5 grisms and one open aperture. The entrance beam diameter at the base of each grism is 120 mm and the mounting size is 138 mm times 5 mm in height. The grism maximum height is 120 mm above its mounting surface. Each grism must have a flat on its mounting diameter to define its rotational angle about the -Z axis.

The Lyot stop positions a precision aperture that is matched to the telescope’s entrance pupil. The Lyot stop will be mounted on the main support structure for the Filter and Grism wheels. The Lyot stop shall be fixed and designed to block the telescope’s secondary obscuration. The Lyot stop is defined on drawing MMIRS-100, sheet 3 of 3. The filter wheel closest to the Lyot stop will carry aperture stops to limit the field of view for the K and H+K bands to minimize background.

The design of the filter and grism mounts shall follow the design shown in the Flamingos-2 CDR package. These elements will reside within a recess in the wheels having sufficient clearance to eliminate thermal stressing and be clamped in place using a spring-loaded retainer. The wheels shall allow adequate optical clearance for the science beam and will neither vignette nor scatter light into the science beam. All
optics must be thermally coupled to their respective wheels and shall operate at a temperature of 80 ± 3 Kelvin.

600 Wheel Design Parameters

The Grism and Filter Wheels shall have stepper motor driven worm gear systems capable of satisfying the following requirements:

1. A minimum factor of safety of 2.5 times the worst case expected drive torque.
2. Unlimited angular rotation in either the clockwise or counterclockwise directions.
3. The detent system shall have positional accuracies as specified in F&P section 300. Those requirements are repeated here; however, they must be verified against the F&P.
 a. Repeatability: within ± 50 microns (1 arc-min) measured at the optical axis.
 b. Stability: ± 25 microns for the filters and grisms measured at the optical axis. This is for one full cryostat rotation about the Z axis over the telescope’s elevation range.
 c. All grisms must be oriented so that their spectra are aligned with the detector’s pixel coordinate system within 1 mrad.
 d. Detent offset: less than 100 microns optic centerline to detent centerline.
4. Micro-switch sensing systems:
 a. One switch shall sense the detent position.
 b. A home micro-switch shall allow the step counter to be reset. The identification of the mask position shall be done in software using both step counting and micro-switch information.
 c. The home switch shall be located at the open position of all wheels.
5. The maximum time to move 180 degrees shall not exceed 30 seconds with 10 seconds as a goal. The software shall determine the direction that will minimize travel time.
6. All designs must operate in a vacuum (≈1x10⁻⁷ Torr) and at a temperature of 80± 3 degrees K.
7. All designs shall use vacuum-compatible materials and consider temperature effects.
8. An interface connector is required for each wheel drive system and the vacuum interface cable. This allows ease of replacement.
9. The desired wheel operating temperature is 80 ± 3 Kelvin. The wheels must meet the required target temperatures and times per F&P section 350.
10. The wheels shall have a common mounting plane for all optics to within ±250 microns as measured along the optical axis and perpendicular to the optical beam within 25 microns in the X – Y plane.
11. All wheels and all other precision manufactured parts must be cycled to Cryogenic temperatures during the manufacturing process to relieve stress and to increase their cryogenic temperature stability.
12. The Grism Wheel shall allow adjustment for positioning of the Lyot stop in all three axes.

700 Detector Mount

The Detector Mount shall follow the Flamingos 2 design for the mounting and thermal attachment of the IR array detector. The detector shall be mounted on a translation stage similar to the Flamingos 2 design; however it will be driven by a Phytron motor using a Cam and employ an LVDT sensor for position readout. The slide travel direction is in the focus direction with a range of travel of 12-15 mm. The focus drive (Cam) shall provide ± 2.5 mm of travel with a position resolution of ≅5 microns. The focus drive
shall be adjustable over the slide’s range of travel to allow setting its cam’s range about the optimal focus position.

The detector shall not have a temperature rate of change (cooling and heating) greater than 0.2 degrees per minute. The IR detector shall be centered on the optical axis within 0.1mm and perpendicular to the entrance slit within 5 microns over the width of the detector. A thermal sensor shall be located near the detector to provide temperature data. The detector electronics shall be based on those developed for the SWIRC program, although the detailed electronic board sizes and packaging design may differ.

The vacuum enclosure shall allow access to the detector at its domed end. The access port shall also allow the array’s cables to exit the vacuum system. The detector’s pre-amplifiers shall be mounted outside of the vacuum enclosure at the access port. This design is intended to minimize the length of the signal cables.

800 Cryogenic System

The optical bench is design to provide an integral LN$_2$ reservoir with a capacity up to 100 liters. The Camera Section shall be designed to provide a minimum hold time of 30 hours once it has been cooled to its operating temperature and filled with LN2. This requirement is specified in section 353 of the F&P. A G10 thermal isolation ring shall be used to support the optical bench from the Camera Section’s warm front bulkhead and provide the necessary thermal isolation and structural strength.

The LN$_2$ reservoir shall have two isolated lines, which shall pass through the vacuum wall. One line shall be a fill line and the other a vent line. These lines must be vacuum-tight and use a standard bellows for thermal isolation. The fill line shall extend down to the reservoir’s detector end. This will allow the reservoir to be purged prior to warm up by pressurizing the LN2 reservoir through the vent line.

810 Design Parameters

The LN$_2$ fill and vent lines shall be designed to minimize thermal conduction to the camera vacuum enclosure. The Flamingos 2, LN2 design shall be used as a reference.

1. The rate of temperature change of the optical bench during warm up and cool down shall be set by the detector’s heating and cooling rate of 0.2 degrees Kelvin per minute. This rate is set in Section 350 of the F&P. The maximum temperature gradients in the lenses listed in Table 1 shall also not be exceeded.
2. A heating system shall be designed to allow warm-up of the camera section. It shall be designed using Kapton flexible heaters bonded to the LN2 reservoir.
3. A system of radiation shields shall be designed to minimize heat loss between the cold components and the surrounding vacuum enclosure. Their effectiveness must satisfy the requirements for hold time stated above.
4. A system of temperature sensors shall be used to characterize the Camera Section’s thermal behavior. The number and placement of these sensors shall be determined through a preliminary thermal analysis.

900 Vacuum system

The Camera Section vacuum enclosure shall provide the necessary interfaces to mount the vacuum components as specified on drawing number C-MMIRS-102.
The Camera Section has no active pumping equipment and will be evacuated with the MOS Section turbo pump. The total cryostat (MOS and Camera Sections combined) pump down time (after initial bake-out and several initial pump-down cycles) shall be less than 4 hours to a pressure of 10^{-4} Torr. The Camera Section shall have two passive absorption cartridges. One will be conductively coupled to the LN2 dewar and the other thermally isolated from it. These cold charcoal absorption cartridges are for pumping nitrogen and other noble gases during the heating and cooling times. A Zeolite absorption cartridge shall also be placed on the outside of the vacuum vessel. It shall be mounted to a valve to allow its removal for recharging.

The vacuum enclosure shall have an evacuation port for use during testing when the MOS Section is not present. This port shall be capped off once the MOS Section is attached. The Camera Section shall then be evacuated through the gate valve described below.

A vacuum gauge shall be mounted on a right angle elbow on the vacuum enclosure’s external wall with appropriate baffling to eliminate illumination within the Camera section. It shall provide pressure readout from one atmosphere to 10^{-9} Torr.

A gate valve shall be employed to provide vacuum isolation of the Camera Section while the MOS Section is either vented to atmosphere or its temperature is above 85 degrees Kelvin. This valve must be leak tight to less the 10^{-8} std. cc of helium per sec. The gate valve shall provide adequate conductance to allow efficient evacuation of the Camera Section. The vacuum valve requires that a safety interlock system be developed with the MOS vent valve to prevent accidental venting. The design of this interlock system requires a safety review prior to implementation.

The vacuum vessel shall be constructed of aluminum with its internal surface polished to 4-6 micro inch roughness. All welds must be vacuum-tight such that the vessel is leak tight to less than 10^{-9} std. cc of helium per sec. Also, a thermal coating maybe specified for the vessels internal/external walls.

<table>
<thead>
<tr>
<th>lens number</th>
<th>radial gradient</th>
<th>axial gradient</th>
<th>dimetral gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.18</td>
<td>46.30</td>
<td>222.22</td>
</tr>
<tr>
<td>4</td>
<td>1.39</td>
<td>48.31</td>
<td>555.56</td>
</tr>
<tr>
<td>5</td>
<td>3.97</td>
<td>42.74</td>
<td>370.37</td>
</tr>
<tr>
<td>6</td>
<td>4.83</td>
<td>222.22</td>
<td>1111.11</td>
</tr>
<tr>
<td>7</td>
<td>92.59</td>
<td>2777.78</td>
<td>222222.22</td>
</tr>
<tr>
<td>8</td>
<td>2.78</td>
<td>42.74</td>
<td>555.56</td>
</tr>
<tr>
<td>9</td>
<td>2.58</td>
<td>44.44</td>
<td>370.37</td>
</tr>
<tr>
<td>10</td>
<td>3.58</td>
<td>113.38</td>
<td>1234.57</td>
</tr>
<tr>
<td>11</td>
<td>2.47</td>
<td>44.44</td>
<td>358.42</td>
</tr>
<tr>
<td>12</td>
<td>3.83</td>
<td>48.31</td>
<td>483.09</td>
</tr>
<tr>
<td>13</td>
<td>2.22</td>
<td>46.30</td>
<td>252.53</td>
</tr>
<tr>
<td>14</td>
<td>5.05</td>
<td>156.49</td>
<td>1221.00</td>
</tr>
</tbody>
</table>

Table 1: Allowable Lens Temperature Gradients [in degrees C]
MMIRS CAMERA SECTION DESIGN
Table of Contents

MMIRS CAMERA SECTION DESIGN .. 1

TABLE OF CONTENTS .. 2

100 CAMERA SECTION DESIGN .. 3

110 Internal Camera Components .. 5
 111 Optical Bench/Dewar Assembly .. 5
 112 Collimator Lens Assembly ... 7
 113 Grism Assembly .. 7
 114 Camera Lens Assembly .. 10
 115 Detector Assembly .. 10
 116 Detector Pre-amplifier Assembly ... 15
 117 Thermal Shield and Temperature Monitoring 16

120 Camera External Components ... 17
 121 Zeolite Sorption Pump ... 17
 122 Vacuum Gauge .. 17
 123 Vacuum Isolation Valve ... 17
 125 LN₂ Fill and Vent Feed-thru’s ... 18
 126 Vacuum Housing .. 19

200 CAMERA SPECIFICATIONS .. 21
100 Camera Section Design
The Camera section houses the following components in an aluminum vacuum vessel with an internal liquid nitrogen dewar:

- Optical bench / dewar assembly
- Collimator lens assembly
- Grism assembly
 - Filter wheel assemblies (2)
 - Lyot stop
 - Grism wheel assembly
- Camera lens assembly
- Detector assembly
- Detector pre-amplifier assembly
- Thermal shields and temperature monitoring devices

The following components are part of the camera section, however are external to the vacuum vessel:

- Zeolite sorption pump
- Pfeiffer vacuum gauge
- Vacuum isolation valve
- Electrical connectors and LN$_2$ feedthrus

The performance and operating characteristics for the Camera Section are defined in SAO specification S-MMIRS-202.

Figures 1 and 2 below show 3-D views of the camera section with the vacuum housing and thermal shields removed for clarity. Figure 3 shows a cross-sectional view of the camera section through the optical axis.
110 Internal Camera Components

111 Optical Bench/Dewar Assembly

The optical bench/dewar assembly is used to mount all the internal components listed in the previous section. The assembly is composed of four main structural elements:

- The front bulkhead is a deep section forging which provides the mounting interface to the telescope truss. It also provides the MOS/Camera vacuum separation via a specially designed vacuum isolation valve. The vacuum LN₂ and electrical feed-thrus penetrate the bulkhead.
• A G10 bonded ring assembly with aluminum end fittings is designed to provide the required thermal isolation and structural stiffness. It is similar to MOS section G10 ring previously described.

• A support ring provides the coupling between the G10 ring and bench structure. It is a deep section aluminum machined ring that is secured to the optical bench’s top plate, at the dewar outer radius, and to the side plates. This provides a wide structural footprint that transfers structural loads directly into the G10 ring.

• The Optical bench/dewar is a complex structure composed of a top plate, side rails and a LN$_2$ storage container. A two inch, light-weighted top plate is welded to the LN$_2$ reservoir. The welds are recessed to avoid damage during assembly/handling and are a continuous around bench’s perimeter. Three stiffening ribs internal to the reservoir provide both structural stiffness and thermal wetting to the LN$_2$. The LN$_2$ fill and vent lines are fastened internally before welding the dewar closed.

Figure 4 - Optical Bench Structural Assembly
112 Collimator Lens Assembly
The collimator assembly is discussed in the Optics Mounts document in this section.

113 Grism Assembly
The Grism assembly is composed of the following components:

- Six-position filter wheel
- Six-position filter wheel with aperture stops
- Lyot stop
- Six-position grism wheel
- Cover

Figure 5 - Grism Assembly
The two filter wheels are identical in design. Each wheel carries up to five filters leaving one open aperture. A single filter or a combination of two filters can be introduced into the beam using both wheels. The wheels have a central hub containing a set of bearings for radial definition and a thrust bearing made from sapphire balls for axial definition. The wheel is a motor driven worm drive assembly.
gear arrangement with a micro switch for homing. A spring loaded detent provides positional stability. The detent also contains a micro switch. The stepper motor is 200 steps/rev and is common with the all of the cold motors in the MOS section. It is specified to maintain the filter temperatures between 77 K - 83 K. The filter wheels’ performance and operating characteristics are defined in Camera Specification S-MMIRS-202.

Figure 6 - Filter Wheel with Aperture Stop

The Lyot stop is a fixed stop held within the grism wheel support structure. Its pattern masks the telescopes obscuration pattern and has an adjustable mount allowing radial positioning. Shims are planned for axial placement if required.
Figure 7 - Lyot Stop

The Grism wheel is a six-position wheel intended to carry five grisms with one permanent open aperture. The grism mounting design follows the Univ. of Florida scheme, which provides rigid positioning and thermal coupling. The grisms fit into a wheel recess with a compression clamp against its mounting foot. The compression clamp has copper fingers that wipe the grisms outer diameter to provide an additional thermal conductive path. The wheel has a central hub containing a set of bearings for radial definition and a thrust bearing made from sapphire balls for axial definition. The grism wheel drive is identical to the filter wheels’. The grism wheel performance and operating characteristics are defined in Camera Specification S-MMIRS-202.
The grism assembly has a thin aluminum cover to provide radiative coupling to the wheel assembly and to limit scattered light from entering the optical path.

114 Camera Lens Assembly

The camera lens assembly is also discussed in the Optics Mounts document.

115 Detector Assembly

The Detector mount is based on the SAO design developed in the SWIRC program. A PCB called the header board serves as mechanical support for the imager, conduit for all signals to and from the imager, and thermal path for primary heat extraction. It mounts a soldered ZIF socket into which the Rockwell Hawaii 2 IR imager plugs. The header board is spring loaded against the detector support bracket, which interfaces with the focus slide.
Figure 9 - Detector Array Mount
The detector focus slide is a Univ. of Florida design adapted with a geared cam drive designed by SAO. The slide uses sapphire balls in machined raceways that are spring loaded together. The cam drive provides a 5-micron motion per motor step with a range of ± 2.5 mm. The cam is driven by a 200 steps/rev stepper motor that is common with all of the cold motors in the instrument. An LVDT is provided for position confirmation with an accuracy of 1 micron.
Section IV.2
Camera Section Design

Figure 11 - Detector Focus Stage

Figure 12 - Detector Focus Stage Front View
Figure 13 - Focus Stage Drive
116 Detector Pre-amplifier Assembly

The four preamplifier and voltage bias PCBs sit just outside the vacuum wall. They are soldered to the external pins of a standard 26-pin hermetic bulkhead connector. This minimizes the required cable length between the IR imager and pre-amplifiers. The pre-amplifiers are surrounded by a protective enclosure. The hermetic connector is mounted to a rectangular block with an o-ring seal. The rectangular block allows the cable on the inside of the vessel to pass through the hole in the mounting ring. The mounting ring can also be removed with all of the preamps attached. The rear cover provides access to the detector and cable connections in the rear of the instrument. The detector array mount can be removed through this rear port.

Figure 14 - Detector Preamp Mounting
117 Thermal Shield and Temperature Monitoring

The optical bench/dewar assembly is surrounded by one thin walled aluminum shield which has a thermal blanket applied to its outer surface. The shield is mounted to the optical bench’s support ring with thermal isolators. Electrical connections pass through connectors mounted on the thermal shield flange. This makes it easy to remove the shield and provides a light-tight penetration of the shield. Eight Lakeshore RTD’s will be placed in the camera section to provide temperature information.

Figure 15 - Thermal Shield
120 Camera External Components

121 Zeolite Sorption Pump

A zeolite Sorption pump cartridge is mounted to the camera vacuum vessel to provide additional pumping capacity for the noble gases. It has a two isolation valves that allow it to be recharged in place without contaminating the internal vacuum.

122 Vacuum Gauge

The camera section has a Pfeiffer HPT-100 pressure gauge. The gauge has a range from one Atmosphere to 1×10^{-9} Torr. The gauge is baffled and mounted at a right angle to the vacuum housing to minimize thermal input.

Figure 16 - External Vacuum Components

123 Vacuum Isolation Valve

A 40mm thick vacuum valve was designed to allow the 100 mm Slit to lens 3 required spacing. A VAT (Swiss vacuum manufacturer) valve insert was combined with an SAO designed motor driven-worm geared, ball screw. A set
of micro switches is used to sense the closed and open positions. The valve is currently scheduled for testing and results will be reported at the CDR.

Figure 17 - Vacuum Isolation Valve

125 LN₂ Fill and Vent Feedthrus

The LN₂ fill and vent lines are made of ½ inch and ¾ inch stainless steel convoluted tubes that are welded to flanges on both ends. A v-groove is machined into the top of the optical bench and an indium ring is placed in the groove. The stainless flange is the bolted to the bench, crushing the indium ring, creating a vacuum seal. The fill and vent lines then continue on the inside of the dewar using standard aluminum tubing that is tack welded to the fins to hold them in place. The convoluted tubing is routed though a cut out in the thermal shield flange and underneath the thermal shield. A shroud is then mounted onto the side rail to prevent light leaks.
126 Vacuum Housing

The vacuum housing is a tapered aluminum design with 0.220” thick walls and an aluminum flange that bolts to the instrument bulkhead. The tapered design is resistant to buckling and reduces the pressure head at the rear access port. Holes are tapped into the front and rear flanges are used to temporarily attach handles during installation and removal of the housing.
Figure 19 - Vacuum Housing
200 Camera Specifications

<table>
<thead>
<tr>
<th>Issue</th>
<th>Requirement</th>
<th>Document</th>
<th>MMIRS Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Grism Capability</td>
<td>Provide Grism Wheel w/ (5) 138mm Grisms and (1) open aperture</td>
<td>S-MMIRS-202 / Section 8.0 / p. 5</td>
<td>By Design</td>
</tr>
<tr>
<td>Multiple Filters Capability</td>
<td>Provide (2) Filter Wheels w/ (5) filters and (1) open aperture each</td>
<td>S-MMIRS-202 / Section 8.0 / p. 5</td>
<td>By Design</td>
</tr>
<tr>
<td>Additional Aperture Stops</td>
<td>Provide aperture stops on Filter Wheel to limit K and H+K bands fields of view</td>
<td>S-MMIRS-202 / Section 8.0 / p. 5</td>
<td>By Design</td>
</tr>
<tr>
<td>Lyot Stop</td>
<td>Provide a cold Lyot stop that optimizes the SNR</td>
<td>S-MMIRS-200 / Section 143 / p. 12</td>
<td>By Design</td>
</tr>
<tr>
<td>Grism Wheel Mechanism Repeatability</td>
<td>±50 microns in all axis</td>
<td>S-MMIRS-202 / Section 9.0 / p. 6</td>
<td>±5.1 microns X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±8.1 microns Y</td>
</tr>
<tr>
<td>Filter Wheel Mechanisms Repeatability</td>
<td>±50 microns in all axis</td>
<td>S-MMIRS-201 / Section 10.1 / p. 6</td>
<td>±5.1 microns X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±8.1 microns Y</td>
</tr>
<tr>
<td>Detector Focus Stage Resolution</td>
<td>≅5 microns</td>
<td>S-MMIRS-202 / Section 10.0 / p. 7</td>
<td>5 microns</td>
</tr>
<tr>
<td>Detector Focus Stage Travel</td>
<td>±2.5 mm</td>
<td>S-MMIRS-202 / Section 10.0 / p. 7</td>
<td>±2.5 mm</td>
</tr>
<tr>
<td>Access to Liquid Nitrogen Ports</td>
<td>LN2 ports and valves shall be accessible without instrument removal from CIR</td>
<td>S-MMIRS-200 / Section 332 / p. 19</td>
<td>By Design</td>
</tr>
<tr>
<td>Access to Electrical Connections</td>
<td>Connections shall be accessible without instrument removal from CIR</td>
<td>S-MMIRS-200 / Section 333 / p. 19</td>
<td>By Design</td>
</tr>
<tr>
<td>Safety - Mechanism back driving</td>
<td>No mechanism shall backdrive in the event of loss of power</td>
<td>S-MMIRS-200 / Section 371</td>
<td>By design</td>
</tr>
<tr>
<td>Grism Wheel Time to Function</td>
<td>Maximum of 30 seconds to any wheel position</td>
<td>S-MMIRS-200 / Section 372 / p.23</td>
<td>12.8 sec</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Filter Wheels Time to Function</td>
<td>Maximum of 30 seconds to any wheel position</td>
<td>S-MMIRS-200 / Section 372 / p.23</td>
<td>12.8 sec</td>
</tr>
<tr>
<td>Grism Motor Drive Torque</td>
<td>Minimum Factor of Safety = 2.5</td>
<td>S-MMIRS-202 / Section 9.0 / p.6</td>
<td>FS = 4.0</td>
</tr>
<tr>
<td>Filter Wheel Motors’ Drive Torques</td>
<td>Minimum Factor of Safety = 2.5</td>
<td>S-MMIRS-202 / Section 9.0 / p.6</td>
<td>FS > 4.0</td>
</tr>
</tbody>
</table>
Introduction
The MMIRS grism wheel is driven by a stepper motor through a worm gear. The wheel is to be balanced so that the torque due to any imbalance is less than the torque due to friction. These calculations were used to size the stepper motor. An acceleration was assumed in order to solve for the maximum torque required to accelerate the load. The total move time of the wheel for a 180 degree rotation was then calculated.

Calculations for Worst Case

Load Parameters

\[J_L := 6.367\, lbf\cdot in\cdot sec^2 \]
Mass moment of inertia of load (from CAD model)

\[T_d := 34.6\, in\cdot lbf \]
Torque to overcome detent spring force (from separate document for detent spring calculations)

\[T_f := 14.083\, in\cdot lbf \]
Torque due to friction in bearings (from bearing friction calcs in separate document)

\[T_L := T_f + T_d \quad T_L = 778.928 \, ozf\cdot in \]
Load Torque

Worm Gear Reduction

Teeth := 252
Starts := 2

\[N_r := \frac{\text{Teeth}}{\text{Starts}} \quad N_r = 126\]
Gear ratio

\[\eta_r := 0.63 \]
Efficiency of worm gear (see separate document for gear calculations)

\[J_r := 9.821 \cdot 10^{-5} \, lbf\cdot in\cdot sec^2 \]
Mass moment of inertia of worm (from cad model)
Stepper Motor Specifications

\[J_{\text{motor}} := 0.82 \text{ oz}\cdot\text{in}^2 \]

Mass moment of inertia of motor

Torque Calculations

\[J_{\text{eq}} := \frac{J_L}{N_r^2 \cdot \eta_r} \]

Equivalent mass moment of inertia of Load reflected on the motor

\[J_{\text{eq}} = 3.932 \text{ oz}\cdot\text{in}^2 \]

\[J_{\text{total}} := J_{\text{motor}} + J_{\text{eq}} \]

Total Mass moment of inertia of the system

\[J_{\text{total}} = 4.752 \text{ oz}\cdot\text{in}^2 \]

\[\alpha_{\text{motor}} := 179.64 \frac{\text{rad}}{\text{sec}^2} \]

Maximum allowable angular acceleration of motor

\[T_{\text{max}} := J_{\text{total}} \cdot \alpha_{\text{motor}} + T_L \left(\frac{1}{\eta_r N_r} \right) \]

Maximum motor torque required to accelerate the load

\[T_{\text{max}} = 12.024 \text{ ozf}\cdot\text{in} \]

\[T_{\text{avail}} := 33 \text{ newton}\cdot\text{cm} \]

Maximum motor torque available

(Phytron VSS 52 @ 300 RPM @ 45 V)

\[SF := \frac{T_{\text{avail}}}{T_{\text{max}}} \]

Minimum expected torque safety factor. This is based a 2X factor of safety for the friction torque and detent spring force. If the assumed friction is less, then the motor torque factor of safety will increase.

\[SF = 3.9 \]
Load Move Profile

\[\omega_{\text{motor.max}} := 300 \text{ rpm} \]

Maximum allowable angular velocity of motor

\[\omega_{\text{load.max}} := \frac{\omega_{\text{motor.max}}}{N_r} \]

\[\omega_{\text{load.max}} = 0.249 \text{ rad/sec} \]

Final (max) angular velocity of load during acceleration

\[\alpha_{\text{load.max}} := \frac{\alpha_{\text{motor}}}{N_r} \]

\[\alpha_{\text{load.max}} = 1.426 \text{ rad/sec}^2 \]

Angular acceleration of load

\[t_a := \frac{\omega_{\text{load.max}}}{\alpha_{\text{load.max}}} \]

\[t_a = 0.175 \text{ sec} \]

\[t_d := t_a \]

Load acceleration, constant velocity and deceleration times

\[\theta_a := \frac{1}{2} \alpha_{\text{load.max}} t_a^2 \]

\[\theta_a = 0.0218 \text{ rad} \]

Angular displacement during acceleration

\[\theta_{\text{total}} := \pi \text{ rad} \]

Total angular displacement

\[\theta_c := \theta_{\text{total}} - 2 \cdot \theta_a \]

\[\theta_c = 3.098 \text{ rad} \]

Angular displacement during constant velocity portion of move

\[t_c := \frac{\theta_c}{\omega_{\text{load.max}}} \]

\[t_c = 12.425 \text{ sec} \]

Time rotating at constant velocity

\[t_{\text{total}} := t_a + t_c + t_d \]

\[t_{\text{total}} = 12.8 \text{ sec} \]

Total move time

Inertia Matching

\[J_{\text{ratio}} := \frac{J_{\text{eq}}}{J_{\text{motor}}} \]

Ratio of driven inertia to the motor inertia

\[J_{\text{ratio}} = 4.796 \]

\[N_0 := \sqrt{\frac{J_L}{\eta_r J_{\text{motor}}}} \]

\[N_0 = 275.927 \]

Optimal gear ratio based on \(J_{\text{ratio}} = 1 \)
Introduction

The following calculations are used to determine the friction torque in the bearings for the Grism Wheel. The grism wheel is supported by three bearings, a normal ball bearing, an angular contact ball bearing and a thrust bearing (a custom sapphire ball bearing). The bearings will be coated with a dry lubricant like MoS₂, but because there is little data on rolling friction or bearing life for dry lubricants the friction torques are calculated using values recommended for standard lubrication. Because of this assumption, the friction torques are multiplied by a 2X safety factor to be conservative. The starting torques for each bearing are found and then summed to determine the total friction torque due to the bearings. The filter wheels are assumed to have have a equal to or lower starting torque since they are lighter and have a lower preload.

Calculations

Load Parameters

- \(F_r := 38 \text{-lbf} \)
- \(F_a := 10 \cdot F_r \)

Deep Groove Ball Bearing Starting Torque

- \(r_{dg} := 12.5 \text{-mm} \)
- \(\mu_{dg} := 0.0025 \)
- \(M_{dg} := \mu_{dg} \cdot F_r \cdot r_{dg} \)
- \(M_{dg} = 0.047 \text{-in-lbf} \)

Angular Contact Ball Bearing Starting Torque

- \(r_{ac} := 12.5 \text{-mm} \)
- \(\mu_{ac} := 0.006 \)
- \(X := 0.35 \)
- \(Y := 0.57 \)
- \(P_{ac} := X \cdot F_r + Y \cdot F_a \)
- \(M_{ac} := \mu_{ac} \cdot P_{ac} \cdot r_{ac} \)
Thrust Ball Bearing Starting Torque

\[r_{th} := 2.8975 \text{ in} \]

Average ball contact radius

\[\mu_{th} := 0.006 \]

Coefficient of rolling friction (assumed to be similar to angular contact ball bearing)

\[M_{th} := \mu_{th} F_a r_{th} \]

Starting Torque

\[M_{th} = 6.606 \text{ in-lbf} \]

Total Starting Torque

\[T_f := 2(M_dg + M_{ac} + M_{th}) \]

Starting torque due to friction (a 2X safety factor is used)

\[T_f = 14.664 \text{ in-lbf} \]
Introduction
The detent for the Grism Wheel is a spring loaded mechanism. The spring force must be large enough to overcome any friction in the wheel so that the wheel will rotate and the detent will bottom out. Once the detent is bottomed out the wheel is fully aligned. The calculations below solve for the spring force needed in the detent mechanism.

Calculations
Solve for spring force required

\[
T_f := 14.664 \text{-in-lbf}
\]
Friction torque in the wheel

\[
X_{OA} := 10.2 \text{-in}
\]
Distance from wheel axis to detent feature

\[
\alpha := 90 \text{-deg}
\]
The included angle of the detent feature

\[
F_A := \frac{T_f}{X_{OA} \cos \left(\frac{\alpha}{2} \right)}
\]
Force at contact point between detent notch and cam follower for equilibrium condition

\[
F_A = 2.033 \text{lbf}
\]
\[
Y_{AB} := 3.0 \text{ in}
\]

\[
X_{AB} := 0.6875 \text{ in}
\]

\[
F_s := \frac{F_A \cdot \frac{1}{2} \left(Y_{AB} \cdot \sin \left(\frac{\alpha}{2} \right) \right)}{Y_{AB}}
\]

\[
F_s = 1.108 \text{ lbf} \quad \text{Spring force required to match friction torque}
\]

\[
\text{SafetyFactor} := 2
\]

\[
F_{\text{req}} := \text{SafetyFactor} \cdot F_s
\]

\[
F_{\text{req}} = 2.216 \text{ lbf} \quad \text{Spring required for application}
\]

Spring Selection

\[
k := \frac{3.5 \text{ lbf}}{\text{in}}
\]

\[
L_{\text{free}} := 1.125 \text{ in} \quad \text{Free length of spring}
\]

\[
L_{\text{solid}} := 0.190 \text{ in} \quad \text{Solid height of spring}
\]

\[
x_{\text{in}} := \frac{F_{\text{req}}}{k}
\]

\[
x_{\text{in}} = 0.633 \text{ in}
\]

\[
x_{\text{out}} := x_{\text{in}} + 0.114 \text{ in} \quad \text{Spring deflection when detent is retracted}
\]

\[
x_{\text{out}} = 0.747 \text{ in}
\]

\[
L_{\text{in}} := L_{\text{free}} - x_{\text{in}} \quad \text{Length of spring when detent is in position}
\]

\[
L_{\text{in}} = 0.492 \text{ in}
\]

\[
L_{\text{out}} := L_{\text{free}} - x_{\text{out}} \quad \text{Length of spring when detent is retracted}
\]

\[
L_{\text{out}} = 0.378 \text{ in}
\]
L_{\text{adjust}} := L_{\text{out}} - L_{\text{solid}} \quad \text{Amount of adjustment available to increase force before spring reaches its solid height}

L_{\text{adjust}} = 0.188 \text{ in}

F_{\text{out}} := k \cdot x_{\text{out}} \quad \text{Spring force when detent is retracted}

F_{\text{out}} = 2.615 \text{ lbf}

F_{\text{max}} := k \cdot (L_{\text{free}} - L_{\text{solid}}) \quad \text{Maximum force of spring}

F_{\text{max}} = 3.273 \text{ lbf}

Spring Force vs Height Curve

\[x := 0.190 \cdot \text{in}, 0.195 \cdot \text{in}, 1.125 \cdot \text{in} \]

\[F(x) := k \cdot (L_{\text{free}} - x) \]
Torque on Wheel Due to Detent

\[
F_{A,\text{out}} := F_{\text{out}} \frac{Y_{\text{AB}}}{Y_{\text{AB}} \sin\left(\frac{\alpha}{2}\right) - X_{\text{AB}} \cos\left(\frac{\alpha}{2}\right)}
\]

Force at contact point between detent notch and cam follower when detent is retracted

\[F_{A,\text{out}} = 4.798 \text{ lbf}\]

\[
T_d := F_{A,\text{out}} \left(X_{OA} \cos\left(\frac{\alpha}{2}\right) \right)
\]

Maximum expected wheel torque required to overcome detent. Since a 2X safety factor was used for the wheel friction torque, the wheel torque, \(T_d\), required to overcome the detent may be actually be less.

\[T_d = 34.6 \text{ in-lbf}\]
Introduction

Enter The grism and filter wheels are accurately positioned using a detent mechanism. The instrument requires that the wheels stop at each position repeatability within +/- 50 microns. The detent repeatability is a function the runout tolerance of the bearings used for the wheel, the detent arm pivot and the cam follower. The calculations below determine the repeatability of the detent mechanism.

Calculations

Bearing Properties

\[t_b := 0.0002 \text{-in} \]

Runout tolerance in bearings. It is assumed that all three bearings in system have similar runout tolerance.

Detent and Wheel Geometry

\[r_g := 9.559 \text{-in} \]

Radius to grism from center of wheel

\[r_d := 10.4 \text{-in} \]

Radius to detent notch in wheel from center of wheel
Error Calculations

\[e_{01} := \tan \left(\frac{t_b}{r_d} \right) \]

\[e_{01} = 3.967 \text{ arcsec} \]

\[e_{x1} := r_g - \left(r_g \cos(e_{01}) \right) \]

\[e_{x1} = 1.768 \times 10^{-9} \text{ in} \]

\[e_{y1} := r_g \sin(e_{01}) \]

\[e_{y1} = 1.838 \times 10^{-4} \text{ in} \]

\[e_{x2} := e_{x1} \quad e_{y2} := e_{y1} \]

\[e_{x3} := e_{x1} \quad e_{y3} := e_{y1} \]

\[e_{x4} := t_b \]

\[e_{x4} = 5.08 \mu m \]

Repeatability Calculations

\[E_x := \sqrt{e_{x1}^2 + e_{x2}^2 + e_{x3}^2 + e_{x4}^2} \]

\[E_x = 5.08 \mu m \]

\[E_y := \sqrt{e_{y1}^2 + e_{y2}^2 + e_{y3}^2} \]

\[E_y = 8.087 \mu m \]

\[E_0 := \sqrt{3 \cdot (e_{01}^2)} \]

\[E_0 = 6.87 \text{ arcsec} \]

Rotational error in wheel due to runout tolerance in wheel bearing. This error is present when the runout in the bearing causes the center of the wheel to translate in the Y direction. This rotational error can be resolved into X and Y positional errors of the optic.

Positional error of optic in X direction.

Positional error of optic in Y direction.

The rotational error of the wheel caused by the bearings in the detent are equal to the rotational error caused by the wheel bearings. Therefore, the positional errors for both bearings and the same as the wheel bearings.

Positional error of optic due to runout tolerance in wheel bearing. This error is present when the runout causes the center of the wheel to translate in the X direction which also translates that optic in the X direction only.
Introduction

A worm gear set was chosen to drive the grism and filter wheels. The diametral pitch was chosen to allow adequate backlash for the detent mechanism to work properly. The calculations below are used to determine the dimensions and efficiency of the gear set.

The gear set was chosen to be a stainless steel worm and aluminum worm gear teeth cut into the grism wheel. The aluminum teeth will be hard anodized. Boston Gear was used as a reference for the worm dimensions and efficiency calculations.

Calculations

Worm and Worm Gear Parameters

\[
\begin{align*}
P & := 12 \text{-in}^{-1} \quad \text{Diametral Pitch} \\
l & := 0.5236 \text{-in} \quad \text{Lead} \\
\lambda & := 9.4667 \text{-deg} \quad \text{Lead Angle} \\
\phi & := 14.5 \text{-deg} \quad \text{Pressure Angle} \\
p & := \frac{\pi}{P} \quad p = 0.262 \text{ in} \quad \text{Circular pitch} \\
a & := \frac{1}{P} \quad a = 0.083 \text{ in} \quad \text{Addendum} \\
D_g & := 21 \text{-in} \quad \text{Pitch diameter of worm gear} \\
N_g & := P \cdot D_g \quad N_g = 252.0000 \quad \text{Number of teeth on worm gear} \\
D_t & := D_g + 2 \cdot a \quad D_t = 21.167 \text{ in} \quad \text{Throat diameter of worm gear} \\
D_o & := D_t + 0.6 \cdot a \quad D_o = 21.2167 \text{ in} \quad \text{Worm gear O.D.} \\
h_t & := \frac{2.157}{P} \quad h_t = 0.17975 \text{ in} \quad \text{Whole depth of tooth}
\end{align*}
\]
\[D_w := 1 \cdot \text{in} \quad \text{Pitch diameter of worm} \]

\[d_o := D_w + 2 \cdot a \quad \text{Worm O.D} \]

\[d_o = 1.167 \text{ in} \]

\[d_r := d_o - 2 \cdot h_t \quad \text{Bottom diameter of worm} \]

\[C := \frac{D_w + D_g}{2} \]

\[C = 11.0000 \text{ in} \quad \text{Center distance between worm and worm gear} \]

Efficiency Calculations

\[\mu := 0.095 \quad \text{Coefficient of friction} \]

\[\eta := \frac{\tan(\lambda) \cdot (1 - \mu \cdot \tan(\lambda))}{\mu + \tan(\lambda)} \]

\[\eta = 0.63 \quad \text{Worm Set Efficiency} \]

Expected Tooth Loads

\[N_r := 126 \quad \text{Gear Ratio} \]

\[T_w := 12.024 \text{-in \cdot ozf} \quad \text{Torque on the worm (from Grism Motor Sizing Calculations)} \]

\[T_g := \eta \cdot N_r \cdot T_w \quad \text{Torque on the worm gear} \]

\[T_g = 59.366 \text{ in \cdot lbf} \]

\[W_{tg} := \frac{2 \cdot T_g}{D_g} \quad \text{Tangential component of force on worm gear} \]

\[W_{tg} = 5.654 \text{ lbf} \]

\[W_{tw} := \frac{2 \cdot T_w}{D_w} \quad \text{Tangential component of force on worm} \]

\[W_{tw} = 1.503 \text{ lbf} \]
$W_{aw} := W_{tg} \quad \text{Axial force on worm}$

$W_{aw} = 5.654 \text{ lbf}$

$W_{ag} := W_{tw} \quad \text{Axial force on worm gear}$

$W_{ag} = 1.503 \text{ lbf}$

$W_r := \frac{W_{tg} \tan(\phi)}{\cos(\lambda)} \quad \text{Radial force separating the two elements}$

$W_r = 1.482 \text{ lbf}$

Since the loads are very low and the worm gear (grism wheel) is hard anodized it is expected that wear of the aluminum worm gear will be minimal. Dry lubricants may also be investigated to further reduce amount of wear.
Introduction

A worm gear set was chosen to drive the ball screw for the isolation valve. The calculations below are used to determine the dimensions and efficiency of the gear set.

The gear set was chosen to be a stainless steel worm and aluminum worm gear. The aluminum teeth will be hard anodized to resist wear. Dry lubricants may be investigated to further reduce any wear on the aluminum worm gear. Boston Gear was used as a reference for the worm dimensions and efficiency calculations.

Calculations

Worm and Worm Gear Parameters

\[P := 24 \text{ in}^{-1} \quad \text{Diametral Pitch} \]
\[l := 0.1309 \text{ in} \quad \text{Lead} \]
\[\lambda := 4.767 \text{ deg} \quad \text{Lead Angle} \]
\[\phi := 14.5 \text{ deg} \quad \text{Pressure Angle} \]
\[p := \frac{\pi}{P} \quad p = 0.131 \text{ in} \quad \text{Circular pitch} \]
\[a := \frac{1}{P} \quad a = 0.042 \text{ in} \quad \text{Addendum} \]
\[D_g := 0.833 \text{ in} \quad \text{Pitch diameter of worm gear} \]
\[N_g := P \cdot D_g \quad N_g = 20 \quad \text{Number of teeth on worm gear} \]
\[D_t := D_g + 2 \cdot a \quad D_t = 0.916 \text{ in} \quad \text{Throat diameter of worm gear} \]
\[D_0 := D_t + 0.6 \cdot a \quad D_0 = 0.941 \text{ in} \quad \text{Worm gear O.D.} \]
\[h_t := \frac{2.157}{P} \quad h_t = 0.09 \text{ in} \quad \text{Whole depth of tooth} \]
Axial force on worm

\[W_{aw} = W_{tg} \]

Tangential component of force on worm

\[W_{tw} = \frac{2 \cdot T_w}{D_w} \]

\[W_{tw} = 4.187 \text{ lbf} \]

Tangential component of force on worm gear

\[W_{tg} = \frac{2 \cdot T_g}{D_g} \]

\[W_{tg} = 31.278 \text{ lbf} \]

Center distance between worm and worm gear

\[C = \frac{D_w + D_g}{2} = 0.6665 \text{ in} \]

Worm Set Efficiency

\[\eta = 0.62 \]

Torque on the worm (from Grism Motor Sizing Calculations)

\[T_w = 16.747 \text{ in-ozf} \]

Coefficient of friction

\[\mu = 0.05 \]

Efficiency Calculations

\[\eta := \frac{\tan(\lambda) \cdot (1 - \mu \cdot \tan(\lambda))}{\mu + \tan(\lambda)} \]

\[\eta = 0.62 \]

Worm O.D

\[d_o := D_w + 2 \cdot a \]

\[d_o = 0.583 \text{ in} \]

Pitch diameter of worm

\[D_w := 0.5 \text{ in} \]

Bottom diameter of worm

\[d_r := d_o - 2 \cdot h_t \]

Efficiency Calculations

Center distance between worm and worm gear

\[C := \frac{D_w + D_g}{2} \]

Bottom diameter of worm

\[d_r := d_o - 2 \cdot h_t \]

Expected Tooth Loads

Torque on the worm gear

\[T_g := \eta \cdot N_g \cdot T_w \]

\[T_g = 13.027 \text{ in-lbf} \]

Torque on the worm gear

Isolation Valve Worm Gear Calcs 050405.mcd
\(W_{aw} = 31.278 \text{ lbf} \)

\[W_{ag} := W_{tw} \quad \text{Axial force on worm gear} \]

\[W_{ag} = 4.187 \text{ lbf} \]

\[W_r := \frac{W_{tg} \cdot \tan(\phi)}{\cos(\lambda)} \quad \text{Radial force separating the two elements} \]

\[W_r = 8.117 \text{ lbf} \]
Introduction
The isolation valve between the camera and MOS assemblies for MMIRS requires a custom
design drive to open and close the gate. A worm gear driven ball screw was chosen for the linear
motion. The drive must provide enough compression force to seal the valve. A worm gear was
chosen so that the drivetrain would not backdrive when the valve is closed. Once the valve is
closed, the power to the motor will be shut off and the worm will hold the gate in place. The
calculations below were used to select the stepper motor size and worm gear ratio.

Calculations

Load Specs

\[F_{\text{min}} := 451 \cdot \text{lbf} \]
Minimum compression force to seal valve (from valve manufacturer VAT)
\[F_{\text{max}} := 590 \cdot \text{lbf} \]
Maximum compression force used to seal valve (from valve manufacturer VAT)

Worm Gear Specs

\[N_w := 20 \]
Gear ratio
\[\eta_w := 0.623 \]
Gear efficiency

Ball Screw Specs

\[L := 0.125 \cdot \text{in} \]
Ball screw lead (Nook Industries 0375-0125 SRT / SB9578 ball screw and nut)
\[\eta_s := 0.90 \]
Efficiency of screw

Required Motor Torque Calcs

\[T_s := \frac{F_{\text{max}} \cdot L}{2 \cdot \pi \cdot \eta_s} \]
Screw Backdriving Torque (required to hold gate in place)
\[T_s = 208.67 \text{ ozf} \cdot \text{in} \]
\[T_{\text{req}} := \frac{T_s}{(\eta_w \cdot N_w)} \]
Required motor torque (to hold gate in place)
\[T_{\text{req}} = 16.747 \text{ ozf} \cdot \text{in} \quad T_{\text{req}} = 11.826 \text{ newton} \cdot \text{cm} \]

\Large \begin{align*}
T_{\text{avail}} & := 65 \cdot \text{newton} \cdot \text{cm} \\
\text{SF} & := \frac{T_{\text{avail}}}{T_{\text{req}}} \\
\text{SF} & = 5.5 \\
\text{Safety Factor} \\
\textbf{Move Time}
\end{align*}

\[d_{\text{travel}} := 8 \cdot \text{in} \quad \text{Travel distance of gate} \]

\[\omega_m := 300 \cdot \text{rpm} \quad \text{Angular velocity of motor} \]

\[\omega_s := \frac{\omega_m}{N_w} \\
\text{speed} := \omega_s \cdot L \\
\text{speed} = 0.196 \frac{\text{in}}{\text{sec}} \quad \text{Linear speed of motor} \]

\[\text{Time} := \frac{d_{\text{travel}}}{\text{speed}} \]

\[\text{Time} = 40.7 \text{ sec} \quad \text{Time fully open or close valve} \]
Introduction
The isolation valve uses a ball screw to open and close the gate. The ball screw provides an axial force on the gate to compress the o-ring and seal the gate opening. This analysis calculates the elastic stability of the ball screw.

Assumptions
- The screw is modeled as a slender rod equal to its root diameter
- The ball screw is fixed at one end and pinned at the other
- The ball screw material is 17-4 PH stainless steel

Analysis

Ball Screw Properties

- \(P_{\text{max}} := 2624 \text{ newton} \)
 Maximum compressive load applied to screw
- \(L := 8 \text{ - in} \)
 Length of screw between fixed bearings and ball nut
- \(d_r := 0.3 \text{ - in} \)
 Root diameter of ball screw
- \(E := 28600 \text{ ksi} \)
 Modulus of elasticity of 17-4 PH stainless steel (http://www.matweb.com)
- \(I := \frac{1}{64} \cdot \pi \cdot d_r^4 \)
 Moment of inertia for screw cross section

Critical load calculation

- \(L_e := 1 \cdot L \)
 Effective length of column for one fixed end, one pinned end

- \(P_{\text{cr}} := \frac{\pi \cdot E \cdot I}{L_e^2} \)
 Critical load at which column becomes unstable

- \(P_{\text{cr}} = 1.754 \times 10^3 \text{ lbf} \)

- \(SF := \frac{P_{\text{cr}}}{P_{\text{max}}} \)
 Factor of safety for load

- \(SF = 3.0 \)

Critical stress calculation

- \(A := \frac{1}{4} \cdot \pi \cdot d_r^2 \)
 Area of column's cross-section
Conclusions

The buckling safety factor for the ball screw is more than adequate. A 3/8" ball screw will not buckle or yield under the load needed to seal the gate.
Introduction

The detector focus slide is translated using a cam mechanism which is driven by a stepper motor. A resolution of 5 microns is required and the slide has to travel 5 mm. In order to get the resolution required an anti-backlash spur gear set was added to the drive train. The calculations that follow are used to determine the gear ratio and cam profile to provide the resolution required.

Calculations

\[
\text{step} := \frac{\text{rev}}{200}
\]

There are 200 steps per revolution for the stepper motor

\[
m_G := 5.5
\]

Gear ratio

\[
\theta_{\text{cam}} := 330 \cdot \text{deg}
\]

Degrees cam rotates from bottom of cam to top of its rise

\[
\text{Rise_distance} := 5 \cdot \text{mm}
\]

Distance the cam profile rises over its full travel

\[
\text{Rise_steps} := \theta_{\text{cam}} \cdot m_G
\]

Number of motor steps over the full travel

\[
\text{Rise_steps} = 1008.3 \text{ step}
\]

\[
\text{Resolution}_{\text{cam}} := \frac{\text{Rise_distance}}{\text{Rise_steps}}
\]

Resolution of the cam profile in microns per motor step

\[
\text{Resolution}_{\text{cam}} = 4.96 \, \mu\text{m} \text{ step}^{-1}
\]
The Camera Section optics mounting system is comprised of two lens assemblies or Vee blocks that house six lenses each. One assembly houses the collimator optics and the other assembly houses the camera optics (see Figures 1 and 2).

Figure 1: Lens assembly and Vee block for the camera optics.
Figure 2 - Collimator Lens Assembly

The radial definition of each lens is accomplished with three Nylon pads equally spaced about the lens diameter. One of these pads is spring-loaded and the other two are fixed. These assemblies are designed to center all of the lenses within a given assembly at both ambient and cryogenic temperatures. This is accomplished by choosing a pad thickness for each lens that will exactly compensate for the lens diameter change between cryogenic and ambient temperatures (Bergner 11/08/04).

The axial definition of each lens is accomplished by a fixed, three-point restraint placed against a flat on the lens surface. This flat has been specified to be perpendicular to the lens generation axis to within 0.01mm. A spring-loaded, three-point axial restraint acts against the opposite surface of the lens by providing the force necessary to maintain the lens axial positioning. The spring force is provided by a large Bellville washer. The axial and radial three point mounts are aligned to eliminate parasitic forces. The mounts are designed for applied loads 10 (g) times the lens weight. The combined radial and axial forces are designed to not exceed 100-psi stressing within the lens. Each fixed axial mount will have a 3-mil Kapton foil against the lens and the spring-loaded mount will have a 10 mil Teflon ring. This will reduce the friction coefficient to 0.2 and 0.04, respectively. During temperature transitions slippage will occur between the lenses and mounts. The axial mount slippage results in radial force vectors, which are at most 2.04g. The lens radial temperature difference is accommodated by the spring-loaded radial
restraint. Since its force vector is 10g, the axial restraint slippage will not cause lens de-centering.

The lens barrels are fabricated from Aluminum, which are placed within an Aluminum Vee block mounting structure. A precision diameter placed at the end of each lens barrel provides registration with sufficient length to maintain the Hertzian stresses at acceptable levels. Two end support brackets apply a 10g spring load to the precision diameters to maintain each barrel’s position within the Vee block. The +z end has a flat surface where the load is applied to eliminate barrel rotation and is fastened to the Vee block to maintain its axial position. Differential temperature effects during cool down and warm up are allowed to produce sliding within the blocks.

The Vee blocks have several tapped holes to allow thermal straps to be installed should additional thermal conduction be desired. This will be determined during initial testing. The lens barrels also have radial holes opposite the radial mounts to measure lens centration and also provide an evacuation path. The Vee block also has evacuation holes in its base to ensure that all volumes are adequately vented. A cover surrounds the lens barrel to provide both a light baffle and to facilitate thermal radiation exchange.

The Vee blocks mount to the optical bench through three mounting feet. The Vee blocks have four contact points with the lens barrels that are separated to maximize stability. The positioning capabilities of this mounting system are described in the structural and thermal sections.

Table 1 below lists the allowable lens position tolerances from Section II (Optical Specifications) and the compliance of the mount design with the specifications. Lens mounting and positioning calculations are available in the document: “MMIRS Collimator and Camera Lens Mount Calculations.”
Table 1: Lens Compliance Table

<table>
<thead>
<tr>
<th>LENS NUM</th>
<th>DECENTER (mm)</th>
<th>TILT (mrad)</th>
<th>AIRSPACE (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPEC</td>
<td>DESIGN</td>
<td>SPEC</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.041</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>0.025</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.031</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.05</td>
<td>0.041</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>0.05</td>
<td>0.043</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>0.05</td>
<td>0.043</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>0.05</td>
<td>0.041</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.05</td>
<td>0.022</td>
<td>0.1</td>
</tr>
<tr>
<td>11</td>
<td>0.05</td>
<td>0.041</td>
<td>0.1</td>
</tr>
<tr>
<td>12</td>
<td>0.05</td>
<td>0.041</td>
<td>0.1</td>
</tr>
<tr>
<td>13</td>
<td>0.05</td>
<td>0.043</td>
<td>0.1</td>
</tr>
<tr>
<td>14</td>
<td>0.05</td>
<td>0.043</td>
<td>0.1</td>
</tr>
</tbody>
</table>

* These specifications exceeded the original specification (see Section II, however they are in compliance within the allowed contingency of the error budget.
100 MMIRS Lens Mount Design

Design parameters:
- Design stress is to be < 100 psi for both axial and radial loads.
- Design loading (static) is 10g
- Nylon thickness (radial), Henry Bergner memo 11/08/04
- The design is to have 3 pads of equal area & equally spaced. The axial and radial pads are aligned.

110 Mount Design Calculation for Lens 3

Lens weight = 4.46 pounds from Zemax file (D. Fabricant 10/20/04)

Radial force required: \(Fr = (10g's \times \text{lens weight}) = 44.6 \text{ pounds} \)

Axial force required: \(Fa = Fr \)

If the optics were displaced by a force greater than 10g, they will return to their original position. This is because the only restraining force is friction at the mounting surfaces. The worst case is in the radial direction where friction exists at both axial surfaces. A coefficient of friction for Mylar on glass was measured at \(\leq 0.2 \) and for Teflon is 0.04. The worst case restraining force is 0.24 times 44.6 or 10.7 pounds, so therefore the restoring force is a factor of 4 greater than the restraining forces. In addition, the radial force vector arising from the axial restraint against the spherical surface has not been considered. This also helps insure that the optic will return to its original position.

Radial Stress: \(S = Fr/A \)
Stress axial: \(Fa/A \) where \(A \) is total area (in^2)

So therefore \(A = Fa/100 = 0.491 \text{ in}-sq \) is required for a 100 psi stress. Solve for the total mounting area available based on the lens mounting diameters.

\[
A_t = \frac{\pi}{4} \times (OD^2-ID^2) \\
A_t = 3.675 \text{ in}^2
\]

Where OD & ID are lens-mounting diameters (see excel spread sheet-Lens mounting dimensions or TK calculation file –Lens mount stress).
Solve for the minimum pad angular extent:
\[P\alpha = \left(\frac{A}{A_t}\right) \times \frac{360}{3} \]
\[P\alpha = 16.03 \text{ degrees} \]

The model shows that a 20-degree wide pad satisfies all lenses, except 5 & 12. However, thermal modeling shows a need for greater contact area. Therefore, all pads will have an angular extent of 40 degrees.

Axial chord length at pad center:
\[C = 2R \sin \frac{a}{2} \quad \text{or} \quad C = 2R \sin 20 = 01.905 \text{ in} \]

Therefore axial pads are (units as above):
\[\text{OD}= 5.78, \text{ ID} = 5.36, \text{ A} = 1.22, \text{ A/P} = .408, \text{ Sa} = 36.4 \text{ psi} \]

The fixed radial hard points are the same size as the axial points (40 degrees) and the width takes advantage of the lens edge thickness and is set at 0.75 inches. The radial force is the same at all pads since the lens is in static equilibrium and therefore
\[S = \frac{44.6}{(1.905*.75)} = 29.7 \text{ psi at each fixed pad location.} \]

The adjustable pad is a rod of diameter 0.75 inches, which has a matched radius to the lens diameter. Its contact area is a compound surface, which can be approximated by a circle giving the least contact area and therefore
\[S = \frac{44.6}{.7854*(.75^2)} = 100.9 \text{ psi.} \]

The radial adjustable pad requires a special cantilever beam spring. Its solution uses standard equations with the input values and results given below. We needed to minimize the lens barrel diameter at lens 3 because it is placed immediately behind the valve plate. This allows is necessary to provide acceptable pumping conductance for a reasonable valve size.

The spring’s design parameters are:
\[E = 10,600,000 \text{ psi}, 6061-T6 \text{ al, } b = .78, h = .125, L = 1.25 \]

The spring then delivers a 45-pound force at a 0.019-inch deflection with a stress equal to 26162 psi. The force slope is .001 in/ 2.4 lbs. (TK file: radial spring lens 3)

120 Mount Design for Lenses 4-14

Lenses 4 through 14 follow the design approach shown for lens 3. Calculations for other areas of the lens mount designs, such as: Belleville springs, friction forces will available at the CDR review. The mechanical mounting stress is not the dominant lens stress. The dominant stress is caused by thermal gradients. We have detailed lens finite element models that are discussed in the thermal and structural sections, which address this area. Also, Belleville spring designs will be available at the CDR. The Bellevilles are designed to be insensitive to deflection, thereby making assembly to achieve the appropriate force level not a concern. The load curve for lens 6 is shown here as an illustration.
The desired load is 16 pounds and acceptable loads are from 0.025 to 0.053 inches of deflection. Radial spring loads are accomplished using various configurations of nylon interface pieces, which all have their loads applied using commercially available compression springs.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>LENS 4</th>
<th>LENS 5</th>
<th>LENS 6</th>
<th>LENS 7</th>
<th>LENS 8</th>
<th>LENS 9</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mat'l</td>
<td>CAF2</td>
<td>BAF2</td>
<td>ZNSE</td>
<td>FQTZ</td>
<td>CAF2</td>
<td>CAF2</td>
<td></td>
</tr>
<tr>
<td>Wg</td>
<td>1.07</td>
<td>1.7</td>
<td>1.6</td>
<td>1.02</td>
<td>1.54</td>
<td>3.88</td>
<td>lbs</td>
</tr>
<tr>
<td>Fa</td>
<td>10.7</td>
<td>17</td>
<td>16</td>
<td>26.6</td>
<td>26.6</td>
<td>60</td>
<td>lbs</td>
</tr>
<tr>
<td>Fr</td>
<td>10.7</td>
<td>17</td>
<td>16</td>
<td>10.2</td>
<td>15.4</td>
<td>38.8</td>
<td>lbs</td>
</tr>
<tr>
<td>Sa</td>
<td>13.3</td>
<td>34</td>
<td>13.9</td>
<td>23.4</td>
<td>22.8</td>
<td>44.5</td>
<td>psi</td>
</tr>
<tr>
<td>Srf</td>
<td>10.6</td>
<td>128</td>
<td>42.5</td>
<td>10.7</td>
<td>40.2</td>
<td>35.3</td>
<td>psi</td>
</tr>
<tr>
<td>Sra</td>
<td>24.2</td>
<td>128</td>
<td>85</td>
<td>52</td>
<td>79.2</td>
<td>70</td>
<td>psi</td>
</tr>
<tr>
<td>At</td>
<td>2.41</td>
<td>2.99</td>
<td>3.43</td>
<td>3.4</td>
<td>3.5</td>
<td>4.0</td>
<td>in-sq</td>
</tr>
<tr>
<td>Ap</td>
<td>.267</td>
<td>.166</td>
<td>.382</td>
<td>.378</td>
<td>.389</td>
<td>.45</td>
<td>in-sq</td>
</tr>
<tr>
<td>Ar</td>
<td>1.0</td>
<td>.132</td>
<td>.382</td>
<td>.952</td>
<td>.383</td>
<td>1.09</td>
<td>in-sq</td>
</tr>
<tr>
<td>Ara</td>
<td>.442</td>
<td>.132</td>
<td>.382</td>
<td>.196</td>
<td>.195</td>
<td>.555</td>
<td>in-sq</td>
</tr>
</tbody>
</table>
Table 2: Data for Lenses 10-14

<table>
<thead>
<tr>
<th>ITEM</th>
<th>LENS 10</th>
<th>LENS 11</th>
<th>LENS 12</th>
<th>LENS 13</th>
<th>LENS 14</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT’L</td>
<td>S-FTM16</td>
<td>CAF2</td>
<td>BAF2</td>
<td>CAF2</td>
<td>S-FTM16</td>
<td></td>
</tr>
<tr>
<td>Wg</td>
<td>1.62</td>
<td>3.69</td>
<td>2.31</td>
<td>2.47</td>
<td>.46</td>
<td>lbs</td>
</tr>
<tr>
<td>Fa</td>
<td>60</td>
<td>39.9</td>
<td>23.1</td>
<td>34.6</td>
<td>34.6</td>
<td>lbs</td>
</tr>
<tr>
<td>Fr</td>
<td>16.2</td>
<td>39.9</td>
<td>23.1</td>
<td>24.7</td>
<td>7.4</td>
<td>lbs</td>
</tr>
<tr>
<td>Sa</td>
<td>45.5</td>
<td>30</td>
<td>20.5</td>
<td>37</td>
<td>52</td>
<td>psi</td>
</tr>
<tr>
<td>Srf</td>
<td>12</td>
<td>27.3</td>
<td>69</td>
<td>21</td>
<td>6.7</td>
<td>psi</td>
</tr>
<tr>
<td>Sra</td>
<td>53.65</td>
<td>90.6</td>
<td>69</td>
<td>82</td>
<td>60.1</td>
<td>psi</td>
</tr>
<tr>
<td>A_t</td>
<td>3.95</td>
<td>3.69</td>
<td>3.36</td>
<td>2.80</td>
<td>2.00</td>
<td>in-sq</td>
</tr>
<tr>
<td>A_p</td>
<td>.439</td>
<td>.410</td>
<td>.186</td>
<td>.312</td>
<td>.22</td>
<td>in-sq</td>
</tr>
<tr>
<td>A_r</td>
<td>1.33</td>
<td>.134</td>
<td>.33</td>
<td>1.18</td>
<td>.68</td>
<td>in-sq</td>
</tr>
<tr>
<td>A_ra</td>
<td>.301</td>
<td>.41</td>
<td>.33</td>
<td>.301</td>
<td>.076</td>
<td>in-sq</td>
</tr>
</tbody>
</table>

The axial lens forces for lens 9, 10, 13 and 14 are higher because they are combined as a lens set.

200 Collimator Lenses (G5; Lenses 3-8)

Note: The lens cells are all designed so that a micrometer or CMM measurement can be made to determine the lens’ radial positioning. This is accomplished through three radial holes sized for a close fit with a standard micrometer probe and our CMM probe. The holes are arranged in line with (opposite) the radial pads. The fits are computed using the example below for lens 3.

Lens: The lens diameter specification is 0.01 mm (.0004 inches). However, this analysis assumes the lens run out to be 0.001 (worst case), except for lens 4 and 5, which need to meet the specification. We will make the radial mounts once we have the exact dimension, so therefore:

Lens 3: 5.8634/5.8630 Radial mounts: 5.8630/5.8644

These dimensions yield a fit: 0/0.001 loose with the average = 0.0005 loose. Similar fits are used elsewhere.

Temperature effects are accounted for by calculating the displacement effects for all three positional requirements:

- De-centering uses the lens and mount properties in the formula \((L*K*ΔT)*2.5\%\).
- Tilt uses expected thermal gradients in standard formulas for calculation.
- Airspace uses the same formula as de-centering except \(K\) is for Aluminum and \(L\) is the separation between components.

210 Decenter

<table>
<thead>
<tr>
<th>Lens de-centering:</th>
<th>Lens 3</th>
<th>Lens 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2-G5 tilt effects & mating:</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Lens mfg. Run out</td>
<td>0.001</td>
<td>0.0004</td>
</tr>
<tr>
<td>Lens/pads clearance</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>CTE</td>
<td>0.0004</td>
<td>0.0002</td>
</tr>
<tr>
<td>Concentricity pads-Mount OD</td>
<td>0.001</td>
<td>0.0005</td>
</tr>
<tr>
<td>RSS: inches (spec.)</td>
<td>0.0016 (0.0019)</td>
<td>0.0019 (.0019)</td>
</tr>
</tbody>
</table>

Lens de-centering:

<table>
<thead>
<tr>
<th>Lens 5</th>
<th>Lens 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2-G5 tilt effects</td>
<td>0.0005</td>
</tr>
<tr>
<td>Lens mfg. Run out</td>
<td>0.0004</td>
</tr>
<tr>
<td>Lens/pads clearance</td>
<td>0.0005</td>
</tr>
<tr>
<td>CTE</td>
<td>0</td>
</tr>
<tr>
<td>Lens cell clearance</td>
<td>0.0005</td>
</tr>
<tr>
<td>Concentricity pads-cell OD</td>
<td>0.0008</td>
</tr>
<tr>
<td>RSS: inches (spec.)</td>
<td>0.0012 (.00019)</td>
</tr>
</tbody>
</table>

Lens de-centering:

<table>
<thead>
<tr>
<th>Lens 7</th>
<th>Lens 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2-G5 tilt effects</td>
<td>0.0005</td>
</tr>
<tr>
<td>Lens mfg. Run out</td>
<td>0.001</td>
</tr>
<tr>
<td>Lens/pads clearance</td>
<td>0.0005</td>
</tr>
<tr>
<td>CTE</td>
<td>0.0003</td>
</tr>
<tr>
<td>Concentricity pads to cell</td>
<td>0.0008</td>
</tr>
<tr>
<td>Concentricity cell to mount</td>
<td>0.0008</td>
</tr>
<tr>
<td>RSS: inches (spec.)</td>
<td>0.0017 (.0019)</td>
</tr>
</tbody>
</table>

220 Tilt

Note: Lens tilts are computed by using the pads axial separation distances, i.e. pads midpoint radius and 120 degrees apart. Also, the tilt due to axial temperature differences at the pads is negligible.

Lens 3

<table>
<thead>
<tr>
<th>Tilt (arc-sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lens mfg surface error:</td>
</tr>
<tr>
<td>Axial restraint:</td>
</tr>
<tr>
<td>Lens barrel face:</td>
</tr>
<tr>
<td>3°K gradient across barrel:</td>
</tr>
<tr>
<td>1°K gradient between Vee supports:</td>
</tr>
<tr>
<td>RSS Total:</td>
</tr>
<tr>
<td>Worst-case tilt is: (spec)</td>
</tr>
</tbody>
</table>

Lens 4

<table>
<thead>
<tr>
<th>Tilt (arc-sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lens mfg surface error:</td>
</tr>
<tr>
<td>Axial restraint:</td>
</tr>
<tr>
<td>Lens barrel face:</td>
</tr>
<tr>
<td>3°K gradient across barrel:</td>
</tr>
<tr>
<td>1°K gradient between Vee supports:</td>
</tr>
<tr>
<td>RSS Total:</td>
</tr>
<tr>
<td>Worst-case tilt is: (spec)</td>
</tr>
</tbody>
</table>
Lens 5
Lens mfg surface error: 12.8
Axial restraint: 15.4
Lens barrel face: 15.9
3°K gradient across barrel: 2.1
1°K gradient between Vee supports: 0.6
RSS Total: 25.7
Worst-case tilt is: (spec) 0.12 m-radians (0.1)

Lens 6
Lens mfg surface error: 11.9
Axial restraint: 14.5
Lens barrel face: 11.3
3°K gradient across barrel: 2.1
1°K gradient between Vee supports: 0.6
RSS Total: 21.9
Worst-case tilt is: (spec) 0.09 m-radians (0.1)

Lens 7
Lens mfg surface error: 14.8
Axial restraint: 14.25
Lens barrel face: 11.7
3°K gradient across barrel: 2.1
1°K gradient between Vee supports: 0.6
RSS Total: 23.7
Worst-case tilt is: (spec) 0.11 m-radians (0.1)

Lens 8
Lens mfg surface error: 14.7
Axial restraint: 14.18
Lens barrel face: 11.7
3°K gradient across barrel: 2.1
1°K gradient between Vee supports: 0.6
RSS Total: 23.6
Worst-case tilt is: (spec) 0.11 m-radians (0.1)

230 Spacing

For these calculations the measurement accuracy has been estimated to be 0.0005 inches. And the measurements are then RSS together. The RSS value is then added to the CTE error. The CTE error is 2.5 percent of \((L \cdot K \cdot \Delta T)\), where \(K\) is for aluminum and \(L\) is the lens spacing distance.

Lens 3: we estimate that it can be placed within 0.001 of the required dimension by Vee block placement. Added to this is the CTE error.
Airspace = 0.001 + 0.0003 = 0.0013 inches (0.033 mm)

Lens 3-4 spacing:
5 measurements required: \(\text{RSS} = 0.0011 \)
\(\text{CTE} = 0.0006 \)
Lens 3-4, Airspace: (spec) 0.0017 inches (0.0019)

Lens 4-5 spacing:
3 measurements required: \(\text{RSS} = 0.0008 \)
\(\text{CTE} = 0.0003 \)
Lens 4-5, Airspace: (spec) 0.0011 inches (0.0019)

Lens 5-6 spacing:
4 measurements required: \(\text{RSS} = 0.001 \)
\(\text{CTE} = 0.000 \)
Lens 5-6, Airspace: (spec) 0.001 inches (0.0019)

Lens 6-7 spacing:
4 measurements required: \(\text{RSS} = 0.001 \)
\(\text{CTE} = 0.00001 \)
Lens 6-7, Airspace: (spec) 0.0011 inches (0.0019)

Lens 7-8 spacing:
3 measurements required: \(\text{RSS} = 0.0008 \)
\(\text{CTE} = 0.0001 \)
Lens 7-8, Airspace: (spec) 0.0009 inches (0.0019)

300 Camera Lenses (G6; Lenses 9-14)

310 Decenter

<table>
<thead>
<tr>
<th>Lens de-centering:</th>
<th>Lens 9</th>
<th>Lens 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3-G4 tilt effects & mating:</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Lens mfg. Run out</td>
<td>0.001</td>
<td>0.0004</td>
</tr>
<tr>
<td>Lens/pads clearance</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>CTE</td>
<td>0.0004</td>
<td>0.0002</td>
</tr>
<tr>
<td>Concentricity pads-Mount OD</td>
<td>0.001</td>
<td>0.0002</td>
</tr>
<tr>
<td>RSS: inches (spec.)</td>
<td>0.0016 (0.0019)</td>
<td>0.0009 (.0009)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lens de-centering:</th>
<th>Lens 11</th>
<th>Lens 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3-G4 tilt effects & mating:</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Lens mfg. Run out</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Lens/pads clearance</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>CTE</td>
<td>0.0004</td>
<td>0.0003</td>
</tr>
<tr>
<td>Concentricity pads-cell OD</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>RSS: inches (spec.)</td>
<td>0.0016 (.0019)</td>
<td>0.0016 (.0019)</td>
</tr>
</tbody>
</table>
Lens de-centering:

<table>
<thead>
<tr>
<th></th>
<th>Lens 13</th>
<th>Lens 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3-G4 tilt effects & mating:</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Lens mfg. Run out</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Lens/pads clearance</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>CTE</td>
<td>0.0002</td>
<td>0.0001</td>
</tr>
<tr>
<td>Concentricity pads to cell</td>
<td>0.0008</td>
<td>0.0008</td>
</tr>
<tr>
<td>Concentricity cell to mount</td>
<td>0.0008</td>
<td>0.0008</td>
</tr>
<tr>
<td>RSS: inches (spec.)</td>
<td>0.0017 (.0019)</td>
<td>0.0017 (.0019)</td>
</tr>
</tbody>
</table>

320 Tilt

Lens 9
- Lens mfg surface error: 9.6
- Axial restraint: 10.1
- Lens barrel face: 8.6
- 3°K gradient across barrel: 2.0
- 1°K gradient between Vee supports: 0.6
- RSS Total: 16.53 arc-seconds
- Worst-case tilt is: (spec) 0.08 m-radians (0.1)

Lens 10
- Lens mfg surface error: 9.8
- Axial restraint: 11.7
- Lens barrel face: 10.3
- 3°K gradient across barrel: 2.0
- 1°K gradient between Vee supports: 0.6
- RSS Total: 18.57
- Worst-case tilt is: (spec) 0.1 m-radians (0.1)

Lens 11
- Lens mfg surface error: 9.7
- Axial restraint: 10.2
- Lens barrel face: 9.4
- 3°K gradient across barrel: 2.0
- 1°K gradient between Vee supports: 0.6
- RSS Total: 17.0
- Worst-case tilt is: (spec) 0.08 m-radians (0.1)

Lens 12
- Lens mfg surface error: 11.5
- Axial restraint: 13.7
- Lens barrel face: 11.9
- 3°K gradient across barrel: 2.0
- 1°K gradient between Vee supports: 0.6
- RSS Total: 21.6
Worst-case tilt is: (spec) 0.1 m-radians (0.1)

Lens 13
- Lens mfg surface error: 13.5
- Axial restraint: 9.6
- Lens 13 & 14 stack up: 9.0
- 3°K gradient across barrel: 2.0
- 1°K gradient between Vee supports: 0.6
- RSS Total: 18.96
- Worst-case tilt is: (spec) 0.09 m-radians (0.1)

Lens 14
- Lens mfg surface error: 18.6
- Axial restraint: 6.8
- Lens barrel face: 6.2
- 3°K gradient across barrel: 2.0
- 1°K gradient between Vee supports: 0.6
- RSS Total: 20.9
- Worst-case tilt is: (spec) 0.10 m-radians (0.1)

230 Element Spacing

The placement of the lenses will be accomplished by standard alignment and measurement techniques, including by moving the camera lens barrel within its Vee block.

- **Lens 8-9 spacing:**
 - Placement to within: $RSS = 0.0010$
 - CTE = .0008
 - Lens 8-9, Airspace: (spec) 0.0018 inches (0.0019)

- **Lens 9-10 spacing:**
 - 4 measurements required: $RSS = 0.001$
 - CTE = .000
 - Lens 9-10, Airspace: (spec) 0.001 inches (0.0019)

- **Lens 10-11 spacing:**
 - 5 measurements required: $RSS = 0.0011$
 - CTE = .0001
 - Lens 10-11, Airspace: (spec) 0.0011 inches (0.0019)

- **Lens 11-12 spacing:**
 - 4 measurements required: $RSS = 0.0010$
 - CTE = .0007
 - Lens 11-12, Airspace: (spec) 0.0017 inches (0.0019)
Lens 12-13 spacing:
4 measurements required: \(\text{RSS} = 0.0010 \)
\(\text{CTE} = .0002 \)
Lens 12-13, Airspace: (spec) 0.0012 inches (0.0019)

Lens 13-14 spacing:
1 measurement required: \(\text{RSS} = 0.0005 \)
\(\text{CTE} = .0000 \)
Lens 13-14, Airspace: (spec) 0.0005 inches (0.0019)
Section V.

Guider/Wave Front Sensor

1. Guider/WFS Design
2. Description of the CCD electronics
100 Overview

Guiding and wavefront sensing (GWFS) on MMIRS will be performed using two identical units that are fed by a fixed pickoff mirror that surrounds the science beam. The field of the GWFS covers the region outside the 7’x7’ science field out to a field radius of 7’. Each GWFS rides on a 2-axis translation stage and serves half of the available field. The camera can be focused and there is also a Guiding/Shack-Hartmann mode selector stage. One unit will operate in Guiding mode while the other will be used to derive wavefront information. Slow-speed guiding information will also be derived from the Shack-Hartmann data and used to control the instrument rotation angle. The existing GWFS used at Magellan are very similar in concept. Below we discuss the optical and mechanical layouts of the GWFS. The software is discussed in the Software section.
MMIRS Guider Wave Front Sensor Assembly

Z Axis Motor

WFS Axis Motor

Focus Motor

X Axis Motor

Reimaging Optics
200 Optical Design

210 Guiding Mode

The optical layout is shown here. The optics are designed to work from 600nm to 900nm, rather than in the blue because MMIRS will be primarily a bright-time instrument. A 16mm thick fused silica flat serves as the vacuum pressure window and is large enough to cover the entire field of view. A symmetric custom doublet is used to collimate and reimage the focal plane onto the camera. A second 16mm piece of silica after the reimager makes the design symmetric.
220 WFS Mode

To operate the GWFS in Shack-Hartmann mode, a stage containing two fold mirrors is moved into the beam. The first fold directs the light through a field stop. The 4” field stop is required to cut down the bright sky background, so that each spot image contains sky background only from its own subaperture. The beam is then folded on through a second collimator which forms a pupil image onto an Adaptive Optics Associates 600-40-S lenslet array. The final fold redirects the light back to the CCD camera. The distances are chosen so that the camera should not need to be refocused when switching between the two modes.

A 20 micron pinhole reference source illuminated by an LED used for calibrating the Shack-Hartman spot positions is located as shown. This location is in the reflected position of the center of the slit mask. To use the calibration source, the GWFS is moved in front of it using the X-Z stage. The calibration is performed to remove the effects of aberrations in the GWFS optics.
230 Optical Prescription

System/Prescription Data

File: C:\Documents and Settings\bmcleod\My Documents\ZemaxFiles\MMIRS\mmirs_guider_outside_wfs_apertures_48deg_new lenslet.ZMX

Title: MMIRS Camera
Date: TUE APR 26 2005

<table>
<thead>
<tr>
<th>Surf</th>
<th>Type</th>
<th>Comment</th>
<th>Radius</th>
<th>Thickness</th>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJ</td>
<td>STANDARD</td>
<td>PRIMARY</td>
<td>Infinity</td>
<td>Infinity</td>
<td></td>
</tr>
<tr>
<td>STO</td>
<td>STANDARD</td>
<td>PRIMARY</td>
<td>-16255.3</td>
<td>-6179.233</td>
<td>MIRROR</td>
</tr>
<tr>
<td>2</td>
<td>STANDARD</td>
<td>SECONDARY</td>
<td>-5150.89</td>
<td>6179.233</td>
<td>MIRROR</td>
</tr>
<tr>
<td>3</td>
<td>STANDARD</td>
<td></td>
<td>Infinity</td>
<td>1430.149</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>STANDARD</td>
<td>LENS1</td>
<td>2126.526</td>
<td>50</td>
<td>CAF2</td>
</tr>
<tr>
<td>5</td>
<td>STANDARD</td>
<td></td>
<td>-1502.7</td>
<td>19.99995</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>STANDARD</td>
<td>LENS2</td>
<td>229.6804</td>
<td>20</td>
<td>CAF2</td>
</tr>
<tr>
<td>7</td>
<td>STANDARD</td>
<td></td>
<td>162.3126</td>
<td>195.2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>COORDBK</td>
<td></td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>STANDARD</td>
<td>PICKOFF</td>
<td>Infinity</td>
<td>0</td>
<td>MIRROR</td>
</tr>
<tr>
<td>10</td>
<td>COORDBK</td>
<td></td>
<td>-</td>
<td>-114.8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>STANDARD</td>
<td></td>
<td>Infinity</td>
<td>-244</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>STANDARD</td>
<td>WINDOW</td>
<td>Infinity</td>
<td>-16</td>
<td>SIL5C</td>
</tr>
<tr>
<td>13</td>
<td>STANDARD</td>
<td>REIMAGER</td>
<td>-10741.9</td>
<td>-15</td>
<td>SF5</td>
</tr>
<tr>
<td>14</td>
<td>COORDBK</td>
<td></td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>STANDARD</td>
<td>FOLD</td>
<td>Infinity</td>
<td>0</td>
<td>MIRROR</td>
</tr>
<tr>
<td>16</td>
<td>COORDBK</td>
<td></td>
<td>-</td>
<td>74.75</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>COORDBK</td>
<td></td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>STANDARD</td>
<td>FOLD</td>
<td>Infinity</td>
<td>0</td>
<td>MIRROR</td>
</tr>
<tr>
<td>19</td>
<td>COORDBK</td>
<td></td>
<td>-</td>
<td>-16</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>STANDARD</td>
<td>APERTURE</td>
<td>Infinity</td>
<td>-15.763</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>COORDBK</td>
<td></td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>STANDARD</td>
<td>FOLD</td>
<td>Infinity</td>
<td>0</td>
<td>MIRROR</td>
</tr>
<tr>
<td>23</td>
<td>COORDBK</td>
<td></td>
<td>-</td>
<td>23.487</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>STANDARD</td>
<td>EDMND 45212</td>
<td>82.92</td>
<td>3</td>
<td>SF5</td>
</tr>
<tr>
<td>25</td>
<td>STANDARD</td>
<td>(COLLIMATOR)</td>
<td>21.38</td>
<td>7.89</td>
<td>SK11</td>
</tr>
<tr>
<td>26</td>
<td>STANDARD</td>
<td></td>
<td>-28.75</td>
<td>40.373</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>COORDBK</td>
<td></td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>STANDARD</td>
<td>FOLD</td>
<td>Infinity</td>
<td>0</td>
<td>MIRROR</td>
</tr>
<tr>
<td>29</td>
<td>COORDBK</td>
<td></td>
<td>-</td>
<td>-18.5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>STANDARD</td>
<td>LENSLET</td>
<td>-20.5</td>
<td>-1</td>
<td>BK7</td>
</tr>
<tr>
<td>31</td>
<td>PARAXIAL</td>
<td></td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>STANDARD</td>
<td></td>
<td>Infinity</td>
<td>-39.5</td>
<td></td>
</tr>
</tbody>
</table>
240 Summary of Basic Properties

Guiding Mode

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel Size (binned x2)</td>
<td>26 microns = 0.16”</td>
</tr>
<tr>
<td>Field of View</td>
<td>80”</td>
</tr>
<tr>
<td>Image Quality</td>
<td>40micron RMS dia = 0.25”</td>
</tr>
</tbody>
</table>

WFS Mode

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collimator focal length</td>
<td>45mm</td>
</tr>
<tr>
<td>Collimator part numb</td>
<td>Edmund 45-212</td>
</tr>
<tr>
<td>Lenslet focal length</td>
<td>40mm</td>
</tr>
<tr>
<td>Lenslet pitch</td>
<td>0.6mm</td>
</tr>
<tr>
<td>Lenslet part number</td>
<td>Adaptive Optics Associates 600-40-S</td>
</tr>
<tr>
<td></td>
<td>Substrate D</td>
</tr>
<tr>
<td>Number of illuminated spots</td>
<td>15 across diameter</td>
</tr>
<tr>
<td>Pixel size (binned x2)</td>
<td>0.18”/pixel</td>
</tr>
<tr>
<td>Spot separation</td>
<td>4.15” = 23 pixels</td>
</tr>
<tr>
<td>Field stop diameter</td>
<td>4” = 0.66 mm = 0.026in = #71 drill</td>
</tr>
</tbody>
</table>

300 Mechanical and Electrical Design

310 Translation Stages

The GWFS X and Z axes are mounted on THK KR33 rails and driven with an integrated ball-screw. Each axis also has a THK SHS rail and block operating as an outrigger for additional support. A Phytron ZSS 52 stepper motor with a 6.25:1 single stage planetary gearhead powers the stages. An integrated power-off brake will prevent the mechanism from backdriving. A Hymark magnetic linear encoder is used to sense position. The positioning tolerance requirement is ±200 microns. The encoder resolution is 5 microns and the step size is 4.8 microns, which is more than adequate to meet this specification.

Controlling flexure of the guider relative to the slit mask is critical to keeping targets aligned with their slits during an observation. Flexure of the GWFS will be reported in Structural Analysis, Section VIII.

320 WFS Select Stage

The Wave Front Sensor select axis is mounted on THK KR30 rails and driven with an integrated ball-screw. A Phytron ZSS 52 stepper motor with a 6.25:1 single stage planetary gearhead powers the stage. An integrated power-off brake will prevent the mechanism from backdriving. A Hymark magnetic linear encoder is used to sense position. The positioning tolerance requirement is ±200 microns. The encoder resolution is 5 microns and the step size is 4.8 microns, which is more than adequate to meet this specification.
GWFS Z-Axis and Select-Axis.

330 Focus Stage.
The Guider Camera axis is mounted on THK RSR rails and driven directly with a cam mounted on the motor/gearhead output shaft. The moving (block) part of the stage attaches to the camera mount. A cam follower attached to the camera mount is spring-loaded against a cam with 2mm of lift. A Phytron ZSS 52 stepper motor with a 6.25:1 single stage planetary gearhead powers the stage. An integrated power-off brake will prevent the mechanism from moving after adjustment. A Hymark magnetic linear encoder is used to sense position. The positioning tolerance requirement is ±40 microns. The encoder resolution is 5 microns and the step size is 1.8 microns, which is more than adequate to meet this specification.
MMIRS Guider Wavefront Sensor Assembly Summary

<table>
<thead>
<tr>
<th>Subassembly</th>
<th>Travel Range Required (mm)</th>
<th>Travel Rate (mm/sec)</th>
<th>Document</th>
<th>MMIRS Design Value</th>
<th>Full Travel Time</th>
<th>Positioning Accuracy (+/-)</th>
<th>Encoder Resolution (um)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guider "X" Axis</td>
<td>+/- 70</td>
<td>18</td>
<td>S-MMIRS-200 / Section 315 / p. 18</td>
<td>200</td>
<td>10 sec</td>
<td>10</td>
<td>1094 rpm</td>
</tr>
<tr>
<td>Guider "Z" Axis</td>
<td>+/- 35</td>
<td>9</td>
<td>S-MMIRS-200 / Section 315 / p. 18</td>
<td>200</td>
<td>10 sec</td>
<td>10</td>
<td>547 rpm</td>
</tr>
<tr>
<td>Camera Focus Axis</td>
<td>+/- 1</td>
<td>n/a</td>
<td>S-MMIRS-200 / Section 315 / p. 18</td>
<td>40</td>
<td>10 sec</td>
<td>25</td>
<td>34.4 rpm</td>
</tr>
<tr>
<td>Wave Front Sensor Axis</td>
<td>40</td>
<td>5</td>
<td>S-MMIRS-200 / Section 315 / p. 18</td>
<td>200</td>
<td>10 sec</td>
<td>10</td>
<td>312.5 rpm</td>
</tr>
</tbody>
</table>
400 CCD Camera

The CCD camera dewar is based on a Steward Observatory design, but modified to accept the larger CCD we are using and will be air-cooled instead of liquid cooled. The CCD is cooled with a Melcor three-stage thermoelectric cooler.

The CCD is clamped between two copper plates. The upper copper plate has a hole in it to expose the detector; the lower plate extends to the TEC. The cold side of the TEC will be soldered to the lower copper plate. The TEC’s hot side will be clamped to the camera baseplate. The CCD and copper plate assembly will be mounted on Kel-F standoffs. Aluminum heatsink fins will be bonded into the guide camera baseplate and a small axial fan will draw air over the fins.

MMIRS Guider Camera

Assuming a 20C ambient and that the TEC’s cold side must reach –30C, it is calculated that the TEC’s hot side will dissipate 8.2 W to the ambient. A typical fan will dissipate an additional 3.4 W for a total of 11.6 W per guider at 20 C ambient. Note the TEC’s contribution to this power dissipation is ambient temperature dependant. At a more typical ambient of 10 C the TEC’s power dissipation is estimated at 4.3 W for a total of 7.7 W per guider.
500 Camera Electronics
The electronics are identical to those currently used at Magellan, with two differences. First, the camera head has been physically separated from the electronics box. A video buffer located in the camera head will provide a level of noise immunity. Second, a new optical fiber based interface is used to communicate with the computer, rather than a copper interface. This will provide much better lightning protection. A description of the guider electronics by Burley et al. follows this section. Even more detail can be found at http://www.ociw.edu/instrumentation/cdd/gcam.html.

600 Guide Star Density
The required field of view and sensitivity of the GWFSs are set by the surface density of suitable guide stars as a function of apparent magnitude. Based on the expected sensitivity of the guide cameras and wavefront sensors, the goal is for a 15th magnitude or brighter guide star and a 14th magnitude or brighter star for the wavefront sensor. The required field of view is then set by the surface density of such stars.

![Figure 1: Probability of having a guide star within some surface area as a function of R magnitude. The field centers are randomly distributed across the entire sky. The second line from the top corresponds to one GWFS field.](image)
The surface density of suitable guide stars was calculated with a series of realizations of various field sizes and apparent magnitude limits with the USNO-B catalog. In particular, a thousand randomly generated, uniformly distributed field centers were calculated and the presence or absence of USNO stars brighter than some apparent magnitude was recorded. These data were used to determine the probability that a given field size would contain a USNO star brighter than some apparent magnitude. Based on these calculations (see Figure above), the two GWFS fields of 80 sq. arc-minutes each are sufficient to identify appropriate stars. In particular, 14th magnitude and brighter stars will be available over 95% of the time.

Figure 2: Probability of having a guide star within some surface area as a function of R magnitude for high Galactic latitude fields only (|b| > 70 degrees).

Many observations with MMIRS will likely target high Galactic latitude fields, which will have significantly lower stellar surface densities. To determine if the MMIRS GWFS fields are still sufficient, a new set of realizations were run for fields with Galactic latitude |b| > 70 degrees. This calculation (shown in Figure 2 above) still indicates that 14th magnitude stars will be available approximately 90% of the time. However, to insure that sufficiently bright stars are available for MOS observations, the MOS design software should include information on the availability of GWFS stars during mask design.
COMPACT CCD GUIDER CAMERA FOR MAGELLAN

Greg Burley, Ian Thompson and Charlie Hull
Observatories of the Carnegie Institution of Washington

Abstract: The Magellan guider camera uses a low-noise frame transfer CCD with a digital signal processor based controller. The electronics feature a compact, simple design, optimized for fast settling times and rapid readout rate. The camera operates (nominally) at -20 °C with thermoelectric cooling. Multiple operating modes are supported, with software selectable binning, exposure times, and subrastering.

Key words: guider camera

The design objective for the Magellan guider camera was to build simple, low-power hardware with enough flexibility to operate in full-frame imaging mode, subrastered guiding mode, and Shack-Hartmann wavefront sensing mode.

The guider camera uses a Marconi CCD47-20 1024×1024×13 µm pixel, low-noise, back-illuminated, frame transfer CCD with a digital signal processor (DSP) based CCD controller. For reduced complexity, most of the digital logic functions are concentrated in the DSP and its internal peripherals, and a programmable logic chip (EPLD). A block diagram of the CCD camera is shown in Figure 1.

The CCD controller for the guider camera has a number of interesting properties. It features a programmable DSP56303 digital signal processor, which allows for software control of image size, subraster, binning, clock voltages, dual-slope signal processing, and exposure times. The circuit designs use simple op-amp and analog switch components for the clock driver and signal processing circuits\(^1\). The preamplifier\(^2\) and signal processing circuits are optimized for fast settling times (less than 100 ns) to
maximize the pixel readout rate. The design has dual signal processing
canals with 14-bit, 1.2 μs conversion time analog-to-digital converters.
Clock and bias voltages are set by digital-to-analog converters. The
controller features temperature monitoring of the CCD, and digital control of
TE cooler current. The on-board DC-DC converters (with heavily filtered
outputs) generate +3.3V, ±5V, ±12V and +28V from 48V DC input.

In operation, the CCD system is controlled by commands and program
code sent over the data link. The DSP is fast enough to directly generate the
sequences used for the CCD parallel and serial transfers from on-chip memory, and write them to the sequence register. Each bit controls one of
the CCD clock lines, with a clock driver to translate to CCD-level voltages.
The DSP controls the dual-slope integrators and analog-to-digital
conversion, extracts the signal pixel-by-pixel and multiplexes the digitized
data onto an RS-485 serial link at 20 Mbps for up to 100 meters. Each of
the ADCs, DACs, sequence register, and data link peripherals are memory
mapped in the DSP to simplify the software design.

The basic sequence patterns programmed into the DSP memory (serial
shift, parallel shift, read pixel, flush pixel) are combined to read out the
array. With the appropriate sequences the CCD can be read out through one
or both output amplifiers.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image size</td>
<td>1024 × 1024</td>
<td>Pixels</td>
</tr>
<tr>
<td>Pixel size</td>
<td>13</td>
<td>μm</td>
</tr>
<tr>
<td>Read noise (slow)</td>
<td>5.0</td>
<td>e-/pixel</td>
</tr>
<tr>
<td>Readout rate (slow)</td>
<td>5.0</td>
<td>e-/pixel/s</td>
</tr>
<tr>
<td>Readout rate (fast)</td>
<td>2.5</td>
<td>e-/pixel/s</td>
</tr>
<tr>
<td>Dark current (-20C)</td>
<td>2</td>
<td>e-/pixel/s</td>
</tr>
<tr>
<td>Frame rate (binned 4×4)</td>
<td>4</td>
<td>fps</td>
</tr>
<tr>
<td>Subraster rate (32×32 pixels)</td>
<td>40</td>
<td>fps</td>
</tr>
</tbody>
</table>

Table 2. Power estimate

<table>
<thead>
<tr>
<th>Circuit block</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital electronics</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>Clock drivers</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Signal processing</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>Preamplifiers</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>TE cooler</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>12.0</td>
<td>watts</td>
</tr>
</tbody>
</table>

Table 1. Detector and readout specifications
Figure 1. Magellan guider camera block diagram.
Physically, the guider camera consists of six circuit boards (DSP timing generator, signal processing, clock driver, power supply, backplane, and CCD header boards), and occupies a volume of less than $3.75 \times 3.5 \times 6.0$ inches. An additional PCI interface board is used in the host computer.

The CCD is enclosed in a sealed, dry gas filled housing with an off-the-shelf two-stage thermoelectric (TE) cooler. The CCD temperature is monitored with an off-chip sensor (AD590) mounted inside the housing. An adjustable current source provides up to 3 amps to the TE cooler, which is rated for $\Delta T = 83 ^\circ C$ under ideal no-load conditions. In practice, $\Delta T \approx 40 ^\circ C$ is achievable with a TE current of about 2 amps.

A liquid-cooled heat sink removed heat from the TE cooler hot side. Even at low flow rates (a few litres per minute), the entire CCD housing can be rapidly chilled to the fluid temperature (nominally $10 ^\circ C$ at the telescope). The TE drive transistor is mounted on the heatsink as well, to prevent it overheating.

OCIW has open-sourced the design information for the guider camera, which is available at www.ociw.edu/~burley/ccd/guider.html. The on-line information contains a complete design description, including all schematics, pcb layouts, EPLD code, dsp source code, C subroutine library, and test results.

The guider cameras are in regular use on the two Magellan 6.5-m telescopes at Las Companas Observatory.

REFERENCES

Section VI.

MMIRS Structural Analysis

Structural Analysis Overview
1. Optical Performance of the GWFS and Science Optics
2. Buckling Analysis of the MOS and Camera Sections
3. Lens 6 Analysis
4. Lens 1 Analysis
5. Radial Lens Mount Sizing for Nylon
6. Thermal Gradient Stress on Lenses 3-14
7. MMIRS Instrument Lift Cart Analysis
The structural analysis performed since the PDR typically focused on either specific subsystems or global models. The subsystem analyses have been used to provide design direction to specific areas of the instrument, while the global models have been employed to provide direction to the large-scale design. These models are presented in this section and are briefly described below.

A high-fidelity, global structural model is in progress and will be presented at the CDR. This model will contain significantly more detail than the previous global models and will supercede those results that employed, or were bounded by, the earlier models.

The specific reports planned for CDR are:

Section VI.1 Optical Performance of the GWFS and Science Optics

Section VI.2 Buckling Analysis of the MOS and Camera Sections

Section VI.3 Lens 6 Analysis

The following reports are included in this data package:

Section VI.4 Lens 1 Analysis

This report summarizes an analysis of the updated lens mount design for L1.

Section VI.5 Radial Lens Mount Sizing for Nylon

This report summarizes an analysis of the updated lens mount design for L3-14.

Section VI.6 Thermal Gradient Stress on Lenses 3-14

This report summarizes the sensitivity of lenses L3-L14 to stress induced by thermal gradients.

Section VI.7 MMIRS Instrument Lift Cart Analysis

This report addresses the structural integrity of the instrument lift cart that is intended to support MMIRS (and other instruments) at Magellan.
Section VI.1

Optical Performance of the GWFS and Science Optics

This document will be available at the CDR.
Section VI.2

Buckling Analysis of the MOS and Camera Sections

This document will be available at the CDR.
Section VI.3

Lens 6 Analysis

This document will be available at the CDR.
Summary:

Stress in MMIRS lens 1 was determined considering the effects of pressure, temperature, lens seating, and friction. The highest stress in the lens was found to be 844 PSI that occurs at the center of the lens. This stress is due primarily to the radial thermal gradient.

Stress at the edge of the lens was found to be dependent upon friction and how the lens seats onto the housing. The maximum edge stress was determined to be 592 PSI.

The current material for lens 1 is calcium fluoride (CaF). This material is notorious for unpredictable failure modes at the stress levels reported here. Due to the “high” stresses from thermal effects and the fundamental uncertainties occurring when the lens seats, it is recommended that lens 1 should instead be constructed from fused silica.
Overview:

The purpose of this report is to determine what stress will be present in the MMIRS lens 1 when the instrument is operating. Lens 1 is unique in many respects and so the analysis must provide basic stress information to cover the unique requirements. First, lens 1 is the only lens in the system that seals outside pressure from the MOS vacuum vessel. Second, the outside pressure can be 14.7 PSI at sea level or 10.7 PSI on the mountain. The seal for the MOS vacuum vessel over this pressure range is accomplished with an o-ring seal. Third, the design baseline calls for the o-ring / housing seating loads to be as close to 85% / 15% as practical. Fourth, because the center of the lens sees more of the cold interior of the instrument than the lens edge, there is a steady state 10 degree C temperature gradient from the center to the lens OD. Fifth, the lens housing will have some flatness tolerance where the lens registrates axially on the housing. The contact areas of the lens on the housing greatly influence the lens stress distribution. Other issues, such as the effect of where the lens touches the housing radially and whether or not friction contributes to the stress in the optic, are other topics considered in this memo.

In the process of understanding the lens stress, three areas emerged as the most critical. The edge area near the OD on the bottom (vacuum) side where the pressure load is reacted produced critical stress. The bottom center of the optic and the internal center of the optic also produced areas of critical stress. Throughout this memo “stress” refers to the maximum principle stress. Maximum principle stress that exceeds the allowable value is a common failure mode for brittle materials.

Analysis Details:

Table 1 lists the most important load cases run on lens 1. The lens stress is fundamentally determined by the superposition of stress from o-ring loads (load case 1), seating loads on the steel housing (load cases 2-6), and thermal loads (load cases 7-9). Obtaining actual lens stress from Table 1 must first resolve the following questions: How is the load split between the o-ring and the housing? How exactly does the lens seat onto the housing? What role does friction play?
Table 1. Summary of FEM Load Cases Run on Lens 1

<table>
<thead>
<tr>
<th>load case</th>
<th>description</th>
<th>stress, PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>max bottom edge</td>
</tr>
<tr>
<td>1</td>
<td>14.7 PSI on outside of lens, supported 360 degrees on o-ring</td>
<td>117</td>
</tr>
<tr>
<td>2</td>
<td>14.7 PSI on outside of lens, supported at two points on a diameter</td>
<td>7,150</td>
</tr>
<tr>
<td>3</td>
<td>14.7 PSI on outside of lens, supported by sine 2 theta without friction at minimum diameter contact area</td>
<td>495</td>
</tr>
<tr>
<td>4</td>
<td>14.7 PSI on outside of lens, supported by sine 2 theta with maximum friction at minimum diameter contact area</td>
<td>629</td>
</tr>
<tr>
<td>5</td>
<td>14.7 PSI on outside of lens, supported by sine 2 theta without friction at maximum diameter contact area</td>
<td>792</td>
</tr>
<tr>
<td>6</td>
<td>14.7 PSI on outside of lens, supported by sine 2 theta with maximum friction at maximum diameter contact area</td>
<td>986</td>
</tr>
<tr>
<td>7</td>
<td>thermal gradient of +10 degrees C from lens center to OD without friction</td>
<td>~0</td>
</tr>
<tr>
<td>8</td>
<td>thermal gradient of +10 degrees C from lens center to OD, supported by sine 2 theta with maximum friction</td>
<td>5,220</td>
</tr>
<tr>
<td>9</td>
<td>thermal gradient of +10 degrees C from lens inner surface to outer surface</td>
<td>~0</td>
</tr>
</tbody>
</table>
The load split between the o-ring and the housing has two values: One at 14.7 PSI (sea level) and 10.7 PSI (on the mountain). Also, our maximum o-ring / housing load split is 85% / 15%. This load split must occur at 10.7 PSI. If the 85% / 15% occurred at 14.7 PSI, the housing would offload on the mountain to decrease housing seat load to something less than 15%. On the mountain total stress may be calculated from the following:

\[
\text{[total 10.7 PSI stress]} = \text{[o-ring unit stress]}*0.85*10.7/14.7 + \text{[housing unit stress]}*0.15*10.7/14.7 + \text{[thermal unit stress from o-ring]}*0.85 + \text{[thermal unit stress from housing @10.7 PSI]}*0.15
\]

Equation 1.

For the total stress at 14.7 PSI, the o-ring / housing load split is calculated from knowing the o-ring load won’t increase (since it’s bottomed out already at 10.7 PSI). Its ratio at 14.7 PSI is:

\[
0.85*10.7/14.7 \text{ or 62%}
\]

This leaves the remainder of 38% load coming from the housing stress. The sea level total stress may be calculated from the following:

\[
\text{[total 14.7 PSI stress]} = \text{[o-ring unit stress]}*0.62 + \text{[housing unit stress]}*0.38 + \text{[thermal unit stress from o-ring]}*0.62 + \text{[thermal unit stress from housing @14.7 PSI]}*0.38
\]

Equation 2.

Next, we relate “o-ring unit stress”, “housing unit stress”, and “thermal unit stress” values from the above equations to specific load cases from Table 1. The simplest relationship is the o-ring unit stresses. The o-ring unit stresses are simply the values directly from load case 1 of Table 1.

Housing unit stresses are calculated from load cases 2-6. Load case 2 represents an extreme stress state with the lens supported at two points 180 degrees apart at the edge of the lens. The peak to valley deflection at the edge of the lens for this load case was 0.00075 inches. Since our flatness machining tolerance is between 0.0003 and 0.0005 inches, the lens housing does not allow this extreme load condition to actually exist. Load cases 3-6 deal with a more realistic scenario. By assuming some small tolerance exists in the lens, we will use the higher housing flatness tolerance of 0.0005 inches to generate boundary condition assumptions for load cases 3-6. Chart 1 shows the worst case machining tolerance for the lens housing: It assumes the 0.0005 inch tolerance follows a sine 2 theta variation around the support edge of the lens. This produces two contact areas about 180 degrees apart with the lens gapping off the housing between the contact areas. This edge behavior is similar for load cases 3-6. Figure 1 shows lens 1 deflection, also typical of load cases 3-6.
Load cases 3, 4 to 5, 6 show the effect of radial contact location on the stress. These load cases were run because the lens rests on a 0.200 inch wide flat of the housing. Under pressure load, line contact can take place at the inside or outside diameter of the flat, depending on the relative deflected angle of the lens vs the housing. Other modeling that included the housing has shown that the housing has a tendency to rotate “out from under” the lens. Because of this, we select load cases 5 and 6 for further consideration. Load cases 5, 6 show the effect of friction on the lens stress. Since the effect of friction is relatively low, we further consider the “worst case” load case 6 to represent the “housing unit stress”.

Chart 1. Housing Tolerance with FEM Contact / Gap Areas
Thermal unit stresses are derived from load cases 7-9. For “thermal unit stress from o-ring”, we assume the o-ring contributes negligible friction and so we use load case 7 directly. Load case 8 assumes maximum friction by pinning the lens to a rigid steel housing along the contact area shown in Chart 1. Obviously friction plays a major role at the edge of the lens, being essentially stress free without friction (load case 7) then generating 5,220 PSI with maximum friction. To properly derive
stress at the edge of the lens, we need to determine if and how much the lens slips. This is determined by comparing the available friction to the actual load in the model. The stress may then be scaled by this ratio. The available friction load is given by:

\[S = P\pi r^2 \mu \]

where \(P \) is the pressure (10.7 or 14.7 PSI), \(r \) is the seal radius (4.37 inches), and \(\mu \) is the coefficient of static friction (0.3). For 10.7 PSI, the available friction force is 193 pounds and for 14.7 PSI the available friction force is 265 pounds. For the load case 8 the friction load present at the boundary of lens 1 was 3,642 pounds. Two things become obvious: The lens will slip when it is exposed to the temperature gradient, and the stress will be greatly reduced at the edge from the load case 8 values. The resulting thermal unit stresses from housing were derived by the ratio of load case 7 (the slip) and 8 (the remaining available friction). Note that stress due the axial thermal gradients (load case 9) are heretofore neglected. Table 2 presents the derived unit load stresses.

<table>
<thead>
<tr>
<th>description</th>
<th>stress, PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max bottom edge</td>
</tr>
<tr>
<td>o-ring unit stress</td>
<td>117</td>
</tr>
<tr>
<td>housing unit stress</td>
<td>986</td>
</tr>
<tr>
<td>thermal unit stress from o-ring</td>
<td>~0</td>
</tr>
<tr>
<td>thermal unit stress from housing @10.7 PSI</td>
<td>277</td>
</tr>
<tr>
<td>thermal unit stress from housing @14.7 PSI</td>
<td>380</td>
</tr>
</tbody>
</table>
Operational stress in lens 1 can now be determined by combining Equations 1 and 2 with the unit load cases listed in Table 2. The results of these calculations are listed in Table 3.

Table 3. Total Stress in Lens 1

<table>
<thead>
<tr>
<th>description</th>
<th>max bottom edge</th>
<th>bottom center</th>
<th>internal center</th>
</tr>
</thead>
<tbody>
<tr>
<td>total stress @10.7 PSI</td>
<td>222</td>
<td>199</td>
<td>839</td>
</tr>
<tr>
<td>total stress @14.7 PSI</td>
<td>592</td>
<td>247</td>
<td>844</td>
</tr>
</tbody>
</table>

References:

1. SAO Master Series archive file, \farpoint\hbergner\ideasbackup\hblens1sine.arc, dated December 17, 2004.
To: George Nystrom
From: Henry Bergner
Date: November 8, 2004
CC: John Boczenowski, Lester Cohen, Dan Fabricant, Bob Fata, Justin Holwell, Paul Martini, Ken McCracken, Brian McLeod, Tim Norton, Sang Park
File: c:\bergner\mmirs\celldiameter\celldiameter11082004.wpd

Scope:

Lenses 3-14 of the MMIRS optical design are to be radially supported on three nylon pads. Each pad is spaced at 120 degrees with two of the pads hard mounted and the third pad being spring loaded. This memo computes the required warm (room temperature) diameters for the nylon pads and the aluminum supports such that the lens-pad and pad-support diameters match exactly when cold (77 degrees K). The nylon pad thicknesses were sized to match the lens-pad assembly coefficient of thermal expansion (CTE) to the bezel/support CTE of aluminum. In theory, this provides lens centration at warm and cold operational temperatures.

The warm nylon pad thickness ranged from 0.100 to 0.601 inches. Although the nylon was sized to provide warm centration from a CTE standpoint, the warm diametral mismatch causes the thicker nylon pads to behave like leaf springs between the lens and the aluminum support. The thicker nylon pads may be slotted so they conform better to their mating parts at warm temperature.
Discussion:

The geometry and materials for the lenses were obtained from Reference 1, except that all cell/support material are aluminum. The lens geometries, material, and cell/support pad materials are listed in Table 1. CTE properties for the materials were obtained from LAE values, NIST values, publications in process, or vendor data sheets. The CTEs used in the analysis are listed in Table 2.

Table 1. Cold Lens Geometry and Cell / Support Pad Materials

<table>
<thead>
<tr>
<th>lens number</th>
<th>lens properties</th>
<th>cell / support pad material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cold diameter,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>material</td>
</tr>
<tr>
<td></td>
<td>diameter,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inch</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>148.900</td>
<td>CAF2</td>
</tr>
<tr>
<td>4</td>
<td>100.000</td>
<td>CAF2</td>
</tr>
<tr>
<td>5</td>
<td>122.770</td>
<td>BAF2</td>
</tr>
<tr>
<td>6</td>
<td>139.700</td>
<td>ZNSE</td>
</tr>
<tr>
<td>7</td>
<td>141.500</td>
<td>FQTZ</td>
</tr>
<tr>
<td>8</td>
<td>142.300</td>
<td>CAF2</td>
</tr>
<tr>
<td>9</td>
<td>163.100</td>
<td>CAF2</td>
</tr>
<tr>
<td>10</td>
<td>159.600</td>
<td>S-FTM16</td>
</tr>
<tr>
<td>11</td>
<td>161.700</td>
<td>CAF2</td>
</tr>
<tr>
<td>12</td>
<td>137.000</td>
<td>BAF2</td>
</tr>
<tr>
<td>13</td>
<td>116.500</td>
<td>CAF2</td>
</tr>
<tr>
<td>14</td>
<td>84.300</td>
<td>S-FTM16</td>
</tr>
</tbody>
</table>

Aluminum
Table 2. Material Thermal Properties

<table>
<thead>
<tr>
<th>material</th>
<th>CTE value, per degree F</th>
<th>source / comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAF2</td>
<td>8.1792E-06</td>
<td>LAE value integrated from 293 to 77K</td>
</tr>
<tr>
<td>CAF2</td>
<td>7.7910E-06</td>
<td>LAE value integrated from 293 to 77K</td>
</tr>
<tr>
<td>FQTZ</td>
<td>1.5000E-07</td>
<td>Vendor data 0 to -50 C (32 to -58 F)</td>
</tr>
<tr>
<td>S-FTM16</td>
<td>4.2000E-06</td>
<td>To be published integrated from 24.85 to -196.15 C (76.73 to 321.1 F)</td>
</tr>
<tr>
<td>ZNSE</td>
<td>2.9790E-06</td>
<td>LAE value integrated from 293 to 77K</td>
</tr>
<tr>
<td>Aluminum</td>
<td>9.9820E-06</td>
<td>LAE value integrated from 293 to 77K</td>
</tr>
<tr>
<td>nylon</td>
<td>5.7022E-05</td>
<td>From NIST data 293 to 80K</td>
</tr>
</tbody>
</table>

The thickness of the nylon pad is sized such that the lens-pad assembly has the same CTE as the aluminum support and cell. For this condition to be met, the following equation applies:

\[
\alpha_a (r_l + \Delta r_t) = r_i \alpha_i + \Delta r_t \alpha_t
\]

where \(\alpha_a \) is the CTE of aluminum, \(r_l \) is the lens radius, \(r_i \) is the thickness of the nylon pad, \(\alpha_i \) is the lens CTE, and \(\alpha_t \) is the nylon CTE. Solving for \(r_t \) produces the following:

\[
\Delta r_t = r_l \left(\frac{\alpha_a - \alpha_r}{\alpha_i - \alpha_a} \right)
\]

The spreadsheet of Reference 2 was used to calculate the cold \(r_t \) values listed in Table 2. Table 2 also lists the warm \(r_t \) values, lens OD, nylon ID and OD, and aluminum support ID.

During cold operation, the lens OD matches the nylon ID and the nylon OD matches the aluminum support ID exactly. However, when the assembly is warm, the fit up is a function of how well the warm lens OD matches the warm nylon ID and how well the warm nylon OD matches the warm support ID. Table 3 suggests that when warm, the nylon contacts the lens at its center (since the warm lens OD is always less than the warm nylon ID). It also suggests the nylon pad contacts the aluminum support at the edges (since the warm nylon OD is always greater than the warm support ID). This configuration causes the nylon to behave like a leaf spring between the lens and the support pad. This is not a problem on the thinner (~0.200 inches or less) nylon pieces because they will compress under the spring preloads. The thicker nylon pieces should be slotted axially to relieve the warm leaf spring effect of the nylon.
Table 3. Computed Geometry Requirements, Units Inch

<table>
<thead>
<tr>
<th>lens number</th>
<th>cold nylon thickness</th>
<th>warm nylon thickness</th>
<th>warm lens OD</th>
<th>warm nylon ID</th>
<th>warm nylon OD</th>
<th>warm support pad ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.146</td>
<td>0.149</td>
<td>5.880</td>
<td>5.993</td>
<td>6.291</td>
<td>6.178</td>
</tr>
<tr>
<td>4</td>
<td>0.098</td>
<td>0.100</td>
<td>3.949</td>
<td>4.025</td>
<td>4.225</td>
<td>4.149</td>
</tr>
<tr>
<td>5</td>
<td>0.100</td>
<td>0.102</td>
<td>4.849</td>
<td>4.942</td>
<td>5.146</td>
<td>5.054</td>
</tr>
<tr>
<td>6</td>
<td>0.417</td>
<td>0.426</td>
<td>5.507</td>
<td>5.623</td>
<td>6.476</td>
<td>6.359</td>
</tr>
<tr>
<td>7</td>
<td>0.601</td>
<td>0.615</td>
<td>5.571</td>
<td>5.696</td>
<td>6.925</td>
<td>6.800</td>
</tr>
<tr>
<td>8</td>
<td>0.139</td>
<td>0.142</td>
<td>5.620</td>
<td>5.728</td>
<td>6.012</td>
<td>5.904</td>
</tr>
<tr>
<td>9</td>
<td>0.160</td>
<td>0.163</td>
<td>6.441</td>
<td>6.565</td>
<td>6.891</td>
<td>6.767</td>
</tr>
<tr>
<td>10</td>
<td>0.396</td>
<td>0.405</td>
<td>6.294</td>
<td>6.424</td>
<td>7.235</td>
<td>7.104</td>
</tr>
<tr>
<td>11</td>
<td>0.158</td>
<td>0.162</td>
<td>6.386</td>
<td>6.509</td>
<td>6.832</td>
<td>6.709</td>
</tr>
<tr>
<td>12</td>
<td>0.112</td>
<td>0.114</td>
<td>5.411</td>
<td>5.514</td>
<td>5.743</td>
<td>5.639</td>
</tr>
<tr>
<td>13</td>
<td>0.114</td>
<td>0.117</td>
<td>4.601</td>
<td>4.689</td>
<td>4.922</td>
<td>4.834</td>
</tr>
<tr>
<td>14</td>
<td>0.209</td>
<td>0.214</td>
<td>3.324</td>
<td>3.393</td>
<td>3.821</td>
<td>3.752</td>
</tr>
</tbody>
</table>

References:

THERMAL GRADIENT STRESS SURVEY
FOR MMIRS LENSES 3-14, REVISION B

To: George Nystrom
From: Henry Bergner
Date: June 16, 2004
CC: Lester Cohen, Bruce Dias, Dan Fabricant, Bob Fata, Brian McLeod, Tim Norton, Sang Park
File: c:\bergner\mmirs\lenssurvey\lenssurveyrevb.wpd

Scope:

This survey was conducted to determine the sensitivity of the MMIRS lenses to thermal gradients. MMIRS lenses 3-14 were subject to unit temperature changes over their radial, axial, and diametral dimensions. For this survey, these were the only loads applied. In general, the radial temperature gradients produced the highest stress. The axial gradients produced about one tenth of the radial gradient stress. The diametral gradients produced about one tenth of the axial gradient stress. The CAF2 lenses produced the highest stress. Based on an allowable max / min principal stress of ±200 PSI, the smallest radial temperature change allowed was determined to be 1.39 degrees C on lens 4. These results must be applied to the thermal design of the MMIRS instrument.
Discussion:

The geometry and materials for the lenses were obtained from Reference 1. Elastic and thermal properties for the materials were obtained from vendor data sheets. The CTEs used in the analysis were chosen to obtain the highest stress for the cool down process: In all cases, this required using the room temperature CTE.

Each lens model was generated using a standard 4,000 element solid model that was modified to the particular diameters and curvatures of the optical prescription using the software of Reference 2. A typical finite element mesh is shown in Figure 1. The particular mesh shown is for lens 3.

![Figure 1. Typical Lens Finite Element Mesh](image)

Radial, axial, and diametral thermal gradients were then applied to each lens. A typical stress distribution resulting from a 1.0 degree C radial temperature gradient is shown in Figure 2. The figure shows the maximum principal stress in PSI of the lens 4 half model. The resulting maximum and minimum principal stresses for each unit load case is listed in Appendix A for completeness. All models and results are in the I-DEAS archive file of Reference 3.
Figure 2. Typical First Principal Stress Distribution (units PSI)
Due to a 1.0 Degree C Radial Temperature Gradient
Table 1 shows the maximum temperature gradient allowed over each lens using an allowable maximum or minimum principal stress of ±200 PSI. Table 1 clearly shows the smallest temperature gradients allowable are in the radial direction: Most lenses allow gradients of less than 4.0 degrees C with the smallest gradient of 1.39 degrees C occurring at lens 4. By inspection it is obvious that temperature gradients in the axial and diametral directions produce large allowable temperature gradients: Therefore it is unlikely that thermal gradients in these directions would cause any excessive stress in the lenses.

Table 1. Allowable Temperature Gradients (Degree C) for MMIRS Lenses

<table>
<thead>
<tr>
<th>lens number</th>
<th>radial gradient</th>
<th>axial gradient</th>
<th>dimetral gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.18</td>
<td>46.30</td>
<td>222.22</td>
</tr>
<tr>
<td>4</td>
<td>1.39</td>
<td>48.31</td>
<td>555.56</td>
</tr>
<tr>
<td>5</td>
<td>3.97</td>
<td>42.74</td>
<td>370.37</td>
</tr>
<tr>
<td>6</td>
<td>4.83</td>
<td>222.22</td>
<td>1111.11</td>
</tr>
<tr>
<td>7</td>
<td>92.59</td>
<td>2777.78</td>
<td>22222.22</td>
</tr>
<tr>
<td>8</td>
<td>2.78</td>
<td>42.74</td>
<td>555.56</td>
</tr>
<tr>
<td>9</td>
<td>2.58</td>
<td>44.44</td>
<td>370.37</td>
</tr>
<tr>
<td>10</td>
<td>3.58</td>
<td>113.38</td>
<td>1234.57</td>
</tr>
<tr>
<td>11</td>
<td>2.47</td>
<td>44.44</td>
<td>358.42</td>
</tr>
<tr>
<td>12</td>
<td>3.83</td>
<td>48.31</td>
<td>483.09</td>
</tr>
<tr>
<td>13</td>
<td>2.22</td>
<td>46.30</td>
<td>252.53</td>
</tr>
<tr>
<td>14</td>
<td>5.05</td>
<td>156.49</td>
<td>1221.00</td>
</tr>
</tbody>
</table>
References:

3. SAO Master Series archive file, c:\bergner\mmirs\lenssurvey\analysis\hbmmirslens.arc, dated May 6, 2004.
Appendix A. Lens Principal Stress from a Unit Load

1.0 Degree C Temperature Gradient

<table>
<thead>
<tr>
<th>lens number</th>
<th>radial stress, psi</th>
<th>axial stress, psi</th>
<th>diametral stress, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max</td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>3</td>
<td>91.800</td>
<td>-72.000</td>
<td>4.320</td>
</tr>
<tr>
<td>4</td>
<td>144.000</td>
<td>-82.800</td>
<td>4.140</td>
</tr>
<tr>
<td>5</td>
<td>50.400</td>
<td>-46.800</td>
<td>4.680</td>
</tr>
<tr>
<td>6</td>
<td>41.400</td>
<td>-19.800</td>
<td>0.900</td>
</tr>
<tr>
<td>7</td>
<td>2.160</td>
<td>-1.800</td>
<td>0.072</td>
</tr>
<tr>
<td>8</td>
<td>70.200</td>
<td>-72.000</td>
<td>4.680</td>
</tr>
<tr>
<td>9</td>
<td>77.400</td>
<td>-72.000</td>
<td>4.320</td>
</tr>
<tr>
<td>10</td>
<td>55.800</td>
<td>-32.400</td>
<td>1.764</td>
</tr>
<tr>
<td>11</td>
<td>81.000</td>
<td>-72.000</td>
<td>4.320</td>
</tr>
<tr>
<td>12</td>
<td>52.200</td>
<td>-50.400</td>
<td>3.780</td>
</tr>
<tr>
<td>13</td>
<td>90.000</td>
<td>-75.600</td>
<td>4.140</td>
</tr>
<tr>
<td>14</td>
<td>39.600</td>
<td>-28.800</td>
<td>1.278</td>
</tr>
</tbody>
</table>
MAGELLAN LIFT CART WELDMENT ANALYSIS

To: Mark Ordway
From: Henry Bergner
Date: April 28, 2005
CC: John Boczenowski, Lester Cohen, Roger Eng, Dan Fabricant, Bob Fata, Justin Holwell,
 Brian McLeod, Ken McCracken, Paul Martini, Mark Mueller, Tim Norton,
 George Nystrom, Andy Szentgyorgyi
File: c:\bergner\liftcart\weldmentreport\liftcartweld.wpd

Scope:

The Magellan lift cart provides precise positioning and lift capabilities for the CIR Adapter,
Wide Field Corrector, Magellan Top Box, and MMIRS. This report is the first in a series to provide
analysis of the complete lift cart system. This report specifically addresses issues relating to the
structural integrity of the lift cart weldment. These issues include stress in cart frame members,
weld stress, bolt joint stress, and deflection analysis.

Load cases analyzed included Z gravity and lateral (X and Y) load cases for three
configurations: lift cart on wheels, lift cart on jack screws, and lift cart hoist. All load conditions
required a factor of safety of 5.0 and a load factor of 2.0. For these requirements, all structural
margins of safety were found to be acceptable. The heaviest lift cart configuration analyzed was
9,990 pounds that included the MMIRS instrument, MMIRS stand, lift cart tray, and lift cart. The
MMIRS instrument jacked to the maximum lift stroke produced many of the highest stress and load
conditions.
Modeling Details:

The solid model for the lift cart is shown in Figure 1. The figure shows the complete cart including motor, shafts, and lift hardware. The tray is shown at the floor position while two struts are shown at the maximum lift stroke for illustration. Figure 1 does not include the instrument or the instrument stand.

Figure 1. Magellan Lift Cart System
The lift cart FEA (retrievable as Reference 1) is shown in Figure 2. Figure 2 shows the critical stress configuration with the MMIRS instrument at the maximum lift stroke. This model geometry detailed the A500 Grade B steel members and the A36 steel plate supporting the motor. Features not clearly shown in the figure include details of the seven bolted joints and short, connecting beam elements that represent the weld joints. The MMIRS instrument, stand, and tray were represented as lumped masses. A very detailed model of the vertical split tubes is discussed later in this report.

Figure 2. FEA for Magellan Lift Cart System
Table 1 lists the lift cart weights used in the analysis. The MMIRS instrument weight was considered the heaviest version possible for the instrument. The weights for the MMIRS stand and cart tray were estimated. The other weights listed in the table are actuals or very close to actual weights. Note all analysis used the full loaded weight of 9,990 lbs except for the hoist load case: Hoisting is not conducted with the 5,002 lb instrument weight or the 500 lb stand weight.

Table 1. Lift Cart Weights

<table>
<thead>
<tr>
<th>Cart Item</th>
<th>Weight, pound</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMIRS instrument</td>
<td>5,002</td>
</tr>
<tr>
<td>MMIRS stand</td>
<td>500</td>
</tr>
<tr>
<td>cart tray</td>
<td>500</td>
</tr>
<tr>
<td>steel tubing and plates</td>
<td>2,308</td>
</tr>
<tr>
<td>lift hardware</td>
<td>320</td>
</tr>
<tr>
<td>gearboxes (2 total)</td>
<td>100</td>
</tr>
<tr>
<td>jacks (4 total)</td>
<td>220</td>
</tr>
<tr>
<td>motor and reducer gearbox</td>
<td>200</td>
</tr>
<tr>
<td>wheels (4 total)</td>
<td>840</td>
</tr>
<tr>
<td>total modeled weight, all load conditions except hoisting</td>
<td>9,990</td>
</tr>
<tr>
<td>total modeled weight, hoisting without instrument and stand</td>
<td>4,488</td>
</tr>
</tbody>
</table>
Load Cases Analyzed:

Table 2 shows the loads applied for each load configuration and direction. The table shows three configurations analyzed: On wheels, on jack screws, and hoisting. “Vertical -Z” loads have only Z load vectors present. All lateral load cases have a combined vertical load (LF 1.0) and a lateral load (LF 2.0). The FS applies the factor of safety to load 1 and load 2. Total vector load applied to the model is given by:

\[
\text{total load} = \text{FS} \times (\text{load 1} \times \text{LF 1} + \text{load 2} \times \text{LF 2}).
\]

<table>
<thead>
<tr>
<th>load case</th>
<th>configuration</th>
<th>load description</th>
<th>FS</th>
<th>load 1</th>
<th>LF 1</th>
<th>load 2</th>
<th>LF 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>on wheels</td>
<td>vertical -Z</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>lateral +X</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>1.0</td>
<td>+0.1GX</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>lateral -X</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>1.0</td>
<td>-0.1GX</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>lateral +Y</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>1.0</td>
<td>+0.1GY</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>lateral -Y</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>1.0</td>
<td>-0.1GY</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>on jack screws</td>
<td>vertical -Z</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>lateral +X</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>1.0</td>
<td>+0.1GX</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>lateral -X</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>1.0</td>
<td>-0.1GX</td>
<td>2.0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>lateral +Y</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>1.0</td>
<td>+0.1GY</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>lateral -Y</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>1.0</td>
<td>-0.1GY</td>
<td>2.0</td>
</tr>
<tr>
<td>11</td>
<td>hoisting</td>
<td>vertical -Z</td>
<td>5.0</td>
<td>-1.0GZ</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A typical deflected shape and stress contour display is shown in Figure 3. The specific load case shown is load case 1. This load case is effectively 10 G’s in the -Z direction. The maximum beam stress shown is 25.6 KSI.

Figure 3. Typical Deflected Shape and Beam Stress for Load Case 1, -10GZ Total Load Vector
The maximum beam stress, bolt load, shell stress, and maximum model deflection for all load cases are summarized in Table 3. The beam stress listed is the maximum of beam and weld element stress: Typically, weld stress was about 10% higher than the maximum beam stress. The most critical stress was from load case 1 at 25.6 KSI. Maximum axial and shear bolt loads listed are the individual maximum bolt loads from 7 bolt patterns. Each bolt pattern typically consisted of 8 bolts. The most critical bolt load was from load case 4 at 3,290 pounds axial and 587 pounds shear. The only shell elements in the model were located under the motor. As listed, these stresses were quite low. The maximum deflection for all load cases was from load cases 9 and 10 at 0.93 inches. Note that these deflections “include” the built in factor of safety and load factors. Under normal operating conditions, the maximum deflection would be less than 0.1 inches.

Table 3. Analysis Stress, Load, and Deflection Results

<table>
<thead>
<tr>
<th>load case</th>
<th>load description</th>
<th>beam stress, KSI</th>
<th>maximum axial bolt load, lb</th>
<th>maximum shear bolt load, lb</th>
<th>shell stress under motor, KSI</th>
<th>maximum deflection, inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vertical -Z</td>
<td>25.6</td>
<td>867</td>
<td>400</td>
<td>3.3</td>
<td>0.18</td>
</tr>
<tr>
<td>2</td>
<td>lateral +X</td>
<td>16.6</td>
<td>370</td>
<td>114</td>
<td>2.6</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>lateral -X</td>
<td>15.4</td>
<td>549</td>
<td>315</td>
<td>1.1</td>
<td>0.39</td>
</tr>
<tr>
<td>4</td>
<td>lateral +Y</td>
<td>25.0</td>
<td>3,290</td>
<td>587</td>
<td>2.3</td>
<td>0.73</td>
</tr>
<tr>
<td>5</td>
<td>lateral -Y</td>
<td>24.7</td>
<td>3,080</td>
<td>623</td>
<td>1.8</td>
<td>0.72</td>
</tr>
<tr>
<td>6</td>
<td>vertical -Z</td>
<td>25.3</td>
<td>643</td>
<td>324</td>
<td>3.5</td>
<td>0.10</td>
</tr>
<tr>
<td>7</td>
<td>lateral +X</td>
<td>19.4</td>
<td>335</td>
<td>169</td>
<td>2.8</td>
<td>0.42</td>
</tr>
<tr>
<td>8</td>
<td>lateral -X</td>
<td>17.5</td>
<td>352</td>
<td>156</td>
<td>1.1</td>
<td>0.43</td>
</tr>
<tr>
<td>9</td>
<td>lateral +Y</td>
<td>20.0</td>
<td>2,710</td>
<td>608</td>
<td>2.7</td>
<td>0.93</td>
</tr>
<tr>
<td>10</td>
<td>lateral -Y</td>
<td>19.7</td>
<td>2,680</td>
<td>607</td>
<td>3.1</td>
<td>0.93</td>
</tr>
<tr>
<td>11</td>
<td>vertical -Z</td>
<td>15.4</td>
<td>701</td>
<td>151</td>
<td>3.4</td>
<td>NA</td>
</tr>
</tbody>
</table>
Margins of Safety:

The maximum allowable weld stress is equal to the base material (A500, Grade B YS 46 KSI): The allowable weld stress is therefore 46 KSI. The margin of safety for members and welds is therefore +0.80.

Table 4 lists the torque requirements and margins of safety for the critical bolt loads in Table 3. Bolt calculations were made using software of Reference 2. The calculations assume the bolt size of ½ - 13 UNC. The bolt type used is an alloy steel Unbrako with a breaking strength of 27,000 pounds. The torque is based on the Unbrako catalog specification that loads the bolt to about 70% of its rated strength. The thread engagement not computed because high strength nuts are using for all bolted joints. The joint preload and the coefficient of static friction of the joint (0.3) are then used to calculate the margin of safety. The margin of safety refers to joint slipping. Note that ultimate joint failure would exceed this by a significant, but difficult to compute, factor.

<table>
<thead>
<tr>
<th>external load, lb</th>
<th>torque, in-lb</th>
<th>joint preload, lb</th>
<th>margin of safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>axial</td>
<td>shear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,290</td>
<td>587</td>
<td>1,850</td>
<td>18,500</td>
</tr>
</tbody>
</table>

Detailed Tube Stress:

The 5 X 5 inch vertical square tubes support the inner 4 X 4 inch tubes. The jack screw / chain assembly allows for the maximum extension of the inner tube moving inside the outer tube. The inner tube is supported or shimmed inside the outer tube by 8 bearing surfaces, 2 on each face. In order for the outer tube to allow the rails on the inner tube to slide, the outer 5 X 5 tubes were required to be split on the internal face as shown in Figure 1. This geometry allows for a high stress to occur when the inner tube tries to “pry” out of the outer tube on the slotted side at full extension with the MMIRS instrument for load cases 4 and 5 (+/- Y lateral). This localized stress was quantified by detailing one of the four vertical inner / outer tube assemblies. Such detailing included not only the detailed tube geometry, but also modeling the 8 bearing surfaces with nonlinear gap elements. The analysis results for this load case is shown in Figure 4.

The maximum stress for this load case is 42.5 KSI. Based on the yield stress of 46 KSI for A500, Grade B, the margin of safety for this load case is +0.08. This margin of safety is acceptable. The model is retrievable at Reference 1.
Figure 4. Detailed Pry Out Stress from +/- Y Loads

References:

1. Ideas Archive File, “hbliftcart.arc”, dated April 28, 2005, by Henry Bergner

Section VII.

MMIRS Thermal Analysis

1. MMIRS Design Compliance Matrix - Thermal
2. MOS Steady State Analysis
3. MOS Transient Analysis
4. MOS Thermal Finish Analysis Report
5. Camera Steady State and Transient Analysis
6. Camera Thermal Finish Analysis Report
7. Camera-Detector Steady State and Transient Analysis
8. Temperature and Stress Distribution in Optics
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Document</th>
<th>Document No.</th>
<th>Document Section</th>
<th>Requirement</th>
<th>Compliance Status</th>
<th>Completed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therm.1</td>
<td>F&P</td>
<td>S-MMIRS-200</td>
<td>141 Thermal Shielding</td>
<td>The MMIRS shall contain sufficient thermal shielding to minimize heat loading on the cryogenic systems.</td>
<td>Requirement Satisfied
MOS: Dewar assembly is covered in thermal blankets. There is a floating passive thermal shield. Guider baffles are covered in thermal blanket/low ε surface finishes
Camera: A system thermal shield is covered in thermal blankets.</td>
<td>SP</td>
</tr>
<tr>
<td>Therm.2</td>
<td>F&P</td>
<td>S-MMIRS-200</td>
<td>173 Thermal Cycle Optics</td>
<td>Thermal cycles of the instrument shall not degrade or destroy the optics and coatings.</td>
<td>Requirement not satisfied
MOS: The temperature gradients within Lens 1 and 2 will not exceed the allowable stress level during the cooling and warming period
Camera: the rate of cooling and heating will be maintained less than 0.2deg-C/min not to exceed the allowable lens stress</td>
<td>SP</td>
</tr>
<tr>
<td>Therm.3</td>
<td>F&P</td>
<td>S-MMIRS-200</td>
<td>222 Science Array Controller Thermal Interface</td>
<td>The array controller, power supplies and associated analog electronics shall be enclosed in a</td>
<td>All control electronic components are enclosed in the rack enclosure.</td>
<td>SP</td>
</tr>
<tr>
<td>Requirement</td>
<td>Design Configuration</td>
<td>Details</td>
<td>Compliance Matrix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>---------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therm.4</td>
<td>F&P S-MMIRS-200</td>
<td>243 GWFS Array Thermal Interface</td>
<td>MMIRS thermal rack enclosure.</td>
<td>GWFS will be cooled using a thermoelectric cooler but may be cooled using a heat sink assembly with a fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therm.5</td>
<td>F&P S-MMIRS-200</td>
<td>246 GWFS Array Controller Thermal Interface</td>
<td>The array controller shall be cooled by the instrument cooling system.</td>
<td>Inside electronic rack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therm.6</td>
<td>F&P S-MMIRS-200</td>
<td>320 Thermal Performance</td>
<td>Thermal gradients in the MMIRS optical bench shall be minimized to prevent degradation of image quality.</td>
<td>All lenses are within 80+/−3K once a thermal stabilization is established.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therm.7</td>
<td>F&P S-MMIRS-200</td>
<td>351 Cryostat</td>
<td>The total time to pump and thermally cycle MMIRS shall not exceed one week, including one day for cold tests and one day for engineering when the instrument is warm.</td>
<td>Approximately 36 hours are required to cool the camera section at a cooling rate of 0.2deg-C/min at the optical bench. Also, approximately 36 hours are required to warm the camera section at a cooling rate of 0.2deg-C/min at the optical bench. 3 days for cooling and warm-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement</td>
<td>F&P</td>
<td>System</td>
<td>MOS Section</td>
<td>Description</td>
<td>Compliance</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Therm.8</td>
<td>F&P</td>
<td>S-MMIRS-200</td>
<td>352 Mos</td>
<td>The total time to thermally cycle the MOS section (with the gate valve closed) and exchange all slit masks shall not exceed nine hours.</td>
<td>The thermal cycle of the MOS section may be completed in approximately 4.8 hours, excluding the time to change MOS slit plates, (0.33hr to boil off excess LN2, 2.5 hrs to warm-up, then 2.0 hrs to cool to the observation temperature).</td>
<td>SP</td>
</tr>
<tr>
<td>Therm.9</td>
<td>F&P</td>
<td>S-MMIRS-200</td>
<td>353 Hold Time</td>
<td>The steady-state hold time of the MOS and Camera Dewars shall each be 30 hours</td>
<td>MOS: Based on 31 watts absorbed = 32 hours of hold time at 22 liters of LN2 Camera: Based on 35.6 watts absorbed = 63.6 hours of hold-time at +25°C ambient with 50 liters of LN2.</td>
<td>SP</td>
</tr>
<tr>
<td>Therm.10</td>
<td>F&P</td>
<td>S-MMIRS-200</td>
<td>354 Thermal Stability</td>
<td>The science detector assembly shall be thermally coupled to the LN2-cooled worksurface to provide maximum stability without requiring active control of the detector temperature</td>
<td>No active thermal control during the science observation period</td>
<td></td>
</tr>
</tbody>
</table>

MMIRS Design Requirement Compliance Matrix

THERMAL DESIGN
<table>
<thead>
<tr>
<th>Requirement No.</th>
<th>Category</th>
<th>Description</th>
<th>Design</th>
<th>Compliance Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therm.11</td>
<td>F&P</td>
<td>S-MMIRS-200</td>
<td>355 Science Array Thermal Interface</td>
<td>The array’s fanout board shall be thermally strapped to the cryo-worksurface, and it shall additionally be controlled with a heater and temperature sensor mounted on the fanout board. The maximum rate of temperature change for the detector during warm up and cool down shall not exceed 0.2 K/min. The detector must be the warmest part of the instrument during warmup to protect it from contamination.</td>
</tr>
<tr>
<td>Therm.12</td>
<td>F&P</td>
<td>S-MMIRS-200</td>
<td>356 Autofill</td>
<td>MMIRS shall be equipped with an autofill system when not mounted on the telescope.</td>
</tr>
</tbody>
</table>

MMIRS Design Requirement Compliance Matrix

THERMAL DESIGN
<table>
<thead>
<tr>
<th>Therm.13</th>
<th>F&P</th>
<th>S-MMIRS-200</th>
<th>700 Environment Requirements</th>
<th>710 Altitude Environment</th>
<th>MMIRS shall be capable of being transported, stored, and operated at either the MMT or Magellan Clay telescopes.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>711 Transportation Altitudes</td>
<td>MMIRS shall be capable of being transported at any altitude between -200 feet and 10,000 feet by any transportation mode. MMIRS shall be capable of being transported by commercial jet with pressurized cargo compartments at altitudes up to 50,000 feet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>712</td>
<td>MMIRS shall be capable of being transported at any altitude between -200 feet and 10,000 feet by any transportation mode. MMIRS shall be capable of being transported by commercial jet with pressurized cargo compartments at altitudes up to 50,000 feet.</td>
</tr>
</tbody>
</table>

The thermal analysis was performed using the 10K feet altitude condition to satisfy the design requirements.
<table>
<thead>
<tr>
<th>Storage Altitudes</th>
<th>stored in or out of its shipping container at any altitude between -200 feet and 10,000 feet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMIRS shall be capable of being operated at any altitude between -200 and 10,000 feet.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation Altitudes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMIRS operational environment shall be limited to -15 to +40 °C.</td>
</tr>
<tr>
<td>MMIRS shall be capable of surviving a temperature of -51 to +71 °C without damage per MIL-STD-810E.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Therm.14 F&P</th>
<th>S-MMIRS-200</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 Environment Requirements</td>
<td></td>
</tr>
<tr>
<td>720 Temperature Environment</td>
<td></td>
</tr>
<tr>
<td>721 Operational Environment</td>
<td></td>
</tr>
<tr>
<td>722 Survival Environment</td>
<td></td>
</tr>
<tr>
<td>The thermal analysis was performed using the +25C ambient temperature condition to satisfy the design requirements.</td>
<td></td>
</tr>
</tbody>
</table>
| Component Spec. (MOS) | S-MMIRS-201 | Temperature Range | Temperature range:
a. First element follows ambient temperature: 313 to 258 degrees Kelvin (40 to -15 Celsius).
b. Second element is 313 to 248 degrees Kelvin (40 to -25 Celsius). | Lens 1: less than +21 deg-C steady state temperature at +25°C Ambient
Lens 2: Less than +19 deg-C at steady state temperature at +25°C Ambient | SP |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Therm.15</td>
<td>S-MMIRS-201</td>
<td>400 Temperature Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therm.16</td>
<td>S-MMIRS-201</td>
<td>500 Guider/Wave front Sensor</td>
<td>The pickoff mirrors for the GWFS shall be mounted on a structural support attached to the cold plate, which will provide a conductive thermal path for the mirrors.</td>
<td>Completed by design</td>
<td>KM</td>
</tr>
<tr>
<td>Therm.17</td>
<td>S-MMIRS-201</td>
<td>600 Dekker Wheel</td>
<td>operating temperature of (\approx 80)</td>
<td>Dekker wheel is predicted at 82K (-191°C)</td>
<td>SP</td>
</tr>
<tr>
<td>Component Spec. (MOS)</td>
<td>S-MMIRS-201</td>
<td>MOS Wheel</td>
<td>Therm.18</td>
<td>The slit masks must be thermally coupled to the slit wheel with their cold operating temperature < 120 degrees Kelvin with a maximum change during the night observing time of 10 degrees Kelvin.</td>
<td>MOS wheel is predicted at 82K (-191°C)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Component Spec. (Camera)</td>
<td>S-MMIRS-202</td>
<td>7.0.5 Optics</td>
<td>Therm.19</td>
<td>Maximum cooling rate: 1 degree K per Minute</td>
<td>Cooling rate is limited to less than 0.2deg-C/min not to exceed the thermal gradient requirements in the lens</td>
</tr>
<tr>
<td>Component Spec. (Camera)</td>
<td>S-MMIRS-202</td>
<td>8.0 Filter and Grism wheels</td>
<td>Therm.20</td>
<td>All optics must be thermally coupled to their respective wheels with their cold operating temperature at 80 degrees Kelvin +/- 2K</td>
<td>All Grism/Filter wheel components are less than 83K once the thermal stabilization is established.</td>
</tr>
<tr>
<td>Component Spec. (Camera)</td>
<td>S-MMIRS-202</td>
<td>11.0 Cryogenic System</td>
<td>Therm.21</td>
<td>The Camera section shall be designed to provide a minimum hold time of 40 hours once cooled and</td>
<td>Camera: Based on 35.6 Watts absorbed = 63.6 hours of hold-time at +25°C ambient with 50 liters of LN₂.</td>
</tr>
<tr>
<td>Therm.22</td>
<td>Component Spec. (Camera)</td>
<td>S-MMIRS-202</td>
<td>810 Cryogenic System</td>
<td>The LN2 fill and vent lines shall be designed to minimize thermal conduction to the camera vacuum enclosure.</td>
<td>Completed by Design</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Therm.23</td>
<td>Component Spec. (Camera)</td>
<td>S-MMIRS-202</td>
<td>810 Cryogenic System</td>
<td>The rate of temperature change of the optical bench during warm up and cool down shall be set by the detector’s heating and cooling rate of 0.2 degrees Kelvin per minute.</td>
<td>Heating and cooling rate are limited to less than 0.2deg-C/min not to exceed the thermal gradient requirements in the lens</td>
</tr>
<tr>
<td>Therm.24</td>
<td>Component Spec. (Camera)</td>
<td>S-MMIRS-202</td>
<td>810 Cryogenic System</td>
<td>A system of radiation shields shall be designed to minimize heat loss between the cold component and the surrounding vacuum enclosure. Their effectiveness must satisfy the requirements for hold time stated.</td>
<td>The system thermal shield is covered in thermal blankets</td>
</tr>
<tr>
<td>Therm.25</td>
<td>Component Spec. (Camera)</td>
<td>S-MMIRS-202</td>
<td>810 Cryogenic System</td>
<td>A system of temperature sensors shall be placed to map the camera section’s thermal behavior</td>
<td>MMIRS Temperature Sensing and Heating Requirements</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Therm.26</td>
<td>Component Spec. (Camera)</td>
<td>S-MMIRS-202</td>
<td>900 Vacuum System</td>
<td>The vacuum vessel shall be constructed of aluminum with its internal surface polished to 4-6 micro inch roughness.</td>
<td>Al Alloy, thermal surface specified.</td>
</tr>
</tbody>
</table>
To: George Nystrom
From: Sang Park (Thermal Engineer)
Date: 25 March 2005

CC: Brian McLeod, Paul Martini, Henry Bergner, Ken McCracken, Justin Holwell, Mike Burke, Tim Norton, John Boczenowski, Bill Podgorski

References:
1. MMIRS-SP012505A Rev A; Subject: MOS Operational Thermal Cycle Profile, From: S. Park, To: G. Nystrom, 07 February 2005
2. MMIRS-SP030405A Preliminary; Subject: MOS Section Thermal Surface Finishes, From: S. Park, To: G. Nystrom, 04 March 2005

Subject: MOS Operational Steady State Temperature

1. SUMMARY/INTRODUCTION

A thermal analysis was performed to characterize the steady state temperature of the MOS section during Science Observation. The MOS thermal design requirements are:
- MOS wheel temperature shall be maintained below 120K (-153°C) and stabilized within 10°C during the science observation period.
- Hold time greater than 30 hours.
- Lens 1 & 2 temperature gradient requirements: TBD
- Time to change MOS slit plates not to exceed 9 hours (See Reference 1 for further details)

This analysis has shown that the steady state temperature of MOS wheel is predicted at 82K (-191°C). Also, the 10°C stabilization was satisfied with the current design and its results are presented in Reference 1. The average steady state temperatures of the lens #1 and #2 are predicted at 294K (21°C) and 291K (18°C), respectively.

The MOS LN2 Dewar is sufficient to provide at least 30 hours of hold-time, a design requirement, when it is half filled or an equivalent of 22 liters of liquid Nitrogen. This analysis had calculated that 31 watts of thermal load was absorbed from the environment via the natural convection on the chamber outer wall surfaces and through the conductive heat transfer at the bulkhead mounting points. Based on only the environment thermal load, the current design will provide 32 hours of hold-time at +25°C ambient with 22 liters of LN2.

The pickoff mirror assembly, optical baffles and the Wave-Front Sensor/Guider are also the parts of the MOS. However, their thermal performances are a subject of a separate report.
2. MOS THERMAL DESIGN

Shown in the Figures 1 thru 3 are the thermal design features that are relevant to this analysis. The MOS assembly includes as a part of the thermal design the following features:

a) LN$_2$ Dewar
b) Thermal baffle, floating shield
c) Cold-shields above the MOS and Dekker wheels
d) G-10 thermal isolation ring
e) Sapphire ball-bearings
f) Thermal surface treatments to enhance thermal radiation heat transfer (*thermal radiation surface properties will be presented further in Section 3.2 Material Properties and Reference 2. MOS Section Thermal Surface Finishes*).

The following paragraphs describe the details of the thermal features.

2.1. LN$_2$ Dewar

The MOS section LN$_2$ Dewar is constructed from Aluminum Alloy 6061-T6 with a 0.75” thick top plate also serving as a mounting platform for the MOS mechanisms and slit wheels. The walls of the MOS Dewar are 0.25” thick and there are also eight (8) internal baffles/stiffeners that are 0.25” thick. The top plate of the Dewar is finished with the black hard-anodized to enhance thermal radiation heat transfer. The external walls of the Dewar are assumed to be covered with 5-7 layer Multi-Layer Insulation (MLI) thermal blankets. The internal baffles, in addition to being a structural stiffener, will serve as a conductive path from LN$_2$ to the top plate during the science observation period.
2.2. G-10 Thermal Isolation

An isolation cylinder made from G-10 is used in the design to thermally isolate the Dewar and associated cold components from the warm environment. The G-10 isolation cylinder is assumed to be 0.128” thick and has bonded aluminum mounting rings at each end which are secured to Dewar and vacuum chamber bulkhead.

2.3. Sapphire Ball Bearings
As a part of the mechanism designs, a set of sapphire balls are used under the MOS and Dekker wheels. These sapphire balls (3mm diameter) have high thermal conductivity at a low temperature (see Section 3.2 Material Properties) which enhance thermal conductance from to the wheels.

![Figure 2. MOS Section Thermal Design](image)

- **G-10 Isolation Cylinder with Al Aly mounting rings**
- **Dekkar Wheel (Finish: Black Anodized)**
- **Sapphire Ball Bearings (Far-side, not shown)**
- **MOS Wheel (Finish: Black Anodized)**
- **Sapphire Ball Bearings (Far-side, not shown)**
- **Dewar Top Plate/Mounting Plate:**
 - Black finish under the wheels
 - Aluminized Kapton Tape remainder surface area
3. THERMAL MATH MODEL/THERMAL ANALYSIS

A detailed system level thermal math model was generated and is depicted in the Figures 4 thru 6 below. The thermal model is generated using Thermal Desktop® as a pre-and post processors. The thermal radiation heat transfer was calculated using RadCAD®. The temperatures were predicted using SINDA finite difference solver.

Included in the thermal model are the MOS vacuum Chamber, lens 1 and 2 assembly, MOS Dewar/Wheel mounting plate assembly, MOS Wheel, Dekker Wheel, G-10 Isolation ring assembly, Thermal shields, and the instrument bulkhead.
Figure 4. Detailed MOS Section Overall Thermal Math Model
(Parts of the model not shown for clarity)

Figure 4a. Detailed MOS Section Overall Thermal Math Model
Floating thermal shield shown
Figure 5. Thermal math model of the MOS Section: Bottom View

Figure 6. Thermal math model of the MOS Section: Corrector Lens 1 & 2 Assembly
(Partial sectional view shown for clarity)
3.1. Analysis Assumptions

The following are the list of assumptions used during the steady state analysis.

- Boundary temperatures:
 - Bulkhead Mounting points = +25°C
 - Local Ambient Air Temperature: +25°C
 - Convective heat transfer Coefficient = 0.00366 w/in²-°C (5.67 w/m²-°C)
 - At 10k feet altitude
 - No thermal radiation heat transfer from the outer shell to the local ambient.
 - Bottom edge of the LN2 Dewar including the baffles: 77K (-196°C)
- No conductive path between the hub of the wheels and the center shaft bearings.

3.2. Material Properties

- Al Aly
 Density: 2700 Kg/m³

- G-10
 Density: 1790 Kg/m³
• Sapphire
 Density: 3970 Kg/m³
 Specific Heat \((C_p) \): 419 J/Kg-K

![Thermal Conductivity Sapphire](image)

• CaF\(_2\)
 Density: 3180 Kg/m³

![Thermal Conductivity CaF\(_2\)](image)

![Specific Heat CaF\(_2\)](image)

• Thermal Surface Properties
 Further detailed descriptions of the thermal surface may be found in Reference 2, MOS Section Thermal Surface Finishes.

<table>
<thead>
<tr>
<th>Description</th>
<th>Mat'l</th>
<th>Thickness</th>
<th>Mat'l</th>
<th>Thickness</th>
<th>Thermal Surface Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS Mtg Plate Support</td>
<td>G-10</td>
<td>0.128</td>
<td></td>
<td></td>
<td>Emissivity</td>
</tr>
<tr>
<td>Dewar Top Plate</td>
<td>Al Aly 6061</td>
<td>0.625</td>
<td>0.9</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Dewar Walls</td>
<td>Al Aly 6061</td>
<td>0.25</td>
<td>0.05</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>MOS Wheel</td>
<td>Al Aly 6061</td>
<td>0.625</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Dekker Wheel</td>
<td>Al Aly 6061</td>
<td>0.5</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>MLI Blanket</td>
<td>Aluminized Mylar</td>
<td>0.00025/each layer</td>
<td>e* = 0.02-0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. ANALYSIS RESULTS

The results of the analysis are presented in the following Figures 7 thru 11.

- **Figure 7. Steady State Temperature of Lens #1**
 - Average Lens #1 Steady State Temperature = 21°C

- **Figure 8. Steady State Temperature of Lens #2**
 - Average Lens #2 Steady State Temperature = 18°C
 - Temperature gradients due to the lens mount contact
Average MOS Wheel Steady State Temperature = -191°C (82K)

Analysis Boundary Condition = +25°C

Figure 9 Steady State Temperature of MOS Wheel

Figure 10. Steady State Temperature of Bulkhead
In addition to the steady state temperature, the thermal math model of the MOS section has predicted that 30.9 watts of thermal load was absorbed from the environment. Based on the energy balance from the model, a total of 12.3 watts were conducted in from the bulkhead mounting points and 18.6 watts were absorbed via convective heat transfer to the MOS vacuum chamber outer walls.

5. CONCLUSION

This analysis has shown that the steady state temperature of MOS wheel is predicted at 82K (-191°C), well below the requirement of 120K. As mentioned previously, the 10°C stabilization was satisfied with the current design and its results are presented in Reference 1. Also, this analysis has shown that the average steady state temperatures of the lens #1 and #2 are 294K (21°C) and 291K (18°C), respectively.

Based on the energy balance from the model, this analysis had calculated that 30.9 watts of thermal load was absorbed from the environment. Based on only the environment thermal load, the current design will provide 32 hours of hold-time at +25°C with 22 liters of LN2. This analysis did not consider the internal thermal dissipations from the other mechanisms, such as drive motors. However, it is expected that the full Dewar, 51 liters (latest design, 3/14/05), will provide a total of 74 hours of hold-time. The MOS LN2 Dewar is sufficient to provide the design requirement of 30 hours of hold-time.
To: George Nystrom
From: Sang Park (Thermal Engineer)
Date: 07 February 2005

CC: Brian McLeod, Paul Martini, Henry Bergner, Ken McCracken, Justin Holwell, Mike Buke, Tim Norton, John Boczenowski, Bill Podgorski

Subject: MOS Operational Thermal Cycle Profile

1. SUMMARY/INTRODUCTION

A thermal analysis was performed to characterize the thermal transient behavior of the MMIRS MOS Section. This analysis showed that the current thermal design is sufficient to thermal cycle the MOS section within the allowable time limit of 9 hours.

During the operational phase of the instrument, a limit of 9 hours was imposed on the “turn-around” time or a “thermal cycle”. A thermal cycle includes: a. Warm-up from the previous observation temperature using heaters including boiling off residual LN2, b. Change of MOS Wheel slit plates, c. Return the MOS section to the observation temperature via cooling the instrument using LN2.

Another requirement that was imposed on the MOS thermal design is that the MOS wheel temperature shall be maintained below 120K (-153°C) and stabilized within 10°C during the science observation period. The results of this analysis will show that the above requirements are satisfied with the current design.

2. MOS THERMAL DESIGN

The entire thermal design of the MOS section will be a subject of a later report. However, shown in the Figures 1 and 2 are the thermal design features that are relevant to this analysis. The MOS section includes as a part of the thermal design: a. LN2 dewar, b. Warm-up heater, c. G-10 thermal isolation ring, d. Sapphire ball-bearings, e. thermal surface treatments to enhance thermal radiation heat transfer (thermal radiation surface properties will be presented further in Section 3.2 Material Properties). The following paragraphs describe the details of the thermal features.
2.1. LN$_2$ Dewar

The MOS section LN$_2$ Dewar is constructed from Aluminum Alloy 6061 (Al Aly 6061) with a 0.75” thick top plate also serving as a mounting platform for the parts of the MOS assembly. The walls of the MOS Dewar are 0.25” thick and there are also eight (8) internal baffles/stiffeners that are 0.25” thick. The top plate of the Dewar is finished with the black hard-anodized to enhance thermal radiation heat transfer. The external walls of the Dewar are assumed to be covered with 5-7 layer Multi-Layer Insulation (MLI) thermal blankets. The internal baffles, in addition to being a structural stiffener, will serve as a conductive path from LN$_2$ to the top plate during the science observation period.

2.2. Warm-Up Heater

The warm-up heaters are constructed from a thin low-outgassing Kapton insulator and they are intimately mounted on the walls of the Dewar. The heaters are sized to dissipate 1500 watts and will be controlled by a Croyocon Heater controller in conjunction with an external power supply sufficient enough to provide 1500 watts to the heaters. The heaters will have ON/OFF set points at +30/+35°C.

2.3. G-10 Thermal Isolation

An isolation cylinder made from G-10 was used in the design in order to thermally isolate the mounting plate of the MOS section (at a LN$_2$ temperature range) from the bulkhead (at a local ambient temperature range) of the instrument. The G-10 isolation cylinder is
assumed to be 0.128” thick and has Al Aly mounting rings secured to the both edges of the cylinder.

2.4. Sapphire Ball Bearings
As a part of the mechanism design, a set of ball bearings were used under the MOS and Dekkar wheels. These ball bearings (3mm diameter) are made from sapphire with the high thermal conductivity at a low temperature (see Section 3.2 Material Properties) to enhance thermal conductance from the mounting plates to the wheels.

3. THERMAL MATH MODEL/THERMAL ANALYSIS
A reduced thermal math model was generated from the detailed overall thermal math model of the MOS section (See Figure 3). The detailed overall thermal math model of the MOS section will be a subject of a separate report. The reduced thermal model for the purpose of characterizing the MOS thermal cycle is depicted in the Figures 4 and 5 below. The reduced thermal model is generated using Thermal Desktop® as a pre-and post processors. The thermal radiation heat transfer was calculated using RadCAD®. The temperatures were predicted using SINDA finite difference solver.

Figure 2. MOS Section Thermal Design
Figure 3. Detailed MOS Section Overall Thermal Math Model
(Parts of the model not shown for clarity)

Figure 4. Reduced thermal math model of the MOS Section: Top View

- MOS Wheel
 (Finish: Black Anodized)
- Dekkar Wheel
 (Finish: Black Anodized)
- Dewar Top Plate/
 Mounting Plate
- G-10 Isolation Cylinder with
 Al Aly mounting rings

Figure 4. Reduced thermal math model of the MOS Section: Top View
3.1. Analysis Assumptions

2 cases were analyzed using the reduced thermal math model as follow:
Case 1. Warm-up Cycle
Case 2. Cooling Cycle

The following are the list of assumptions used during each case of the analysis.

Case 1. Warm-up Cycle Analysis Assumptions
- Initial temperature: 90K (-183°C)
- No LN2 left in the Dewar
- Boundary temperatures:
 - Bulkhead side of the G-10 Cylinder = +25°C
 - Bottom edge of the LN2 Dewar including the baffles: 77K (-196°C)
- Warm-up heaters set points +30/+35°C
- Warm-up heater dissipation = 1500W evenly distributed around the cylinder portion of the Dewar
- 40w external heat load

No conductive path between the hub of the wheels and the center shaft bearings

Case 2. Cooling Cycle Analysis Assumptions
- Initial temperature: +25°C
- Boundary temperatures:
 - Bulkhead side of the G-10 Cylinder = +25°C
- Bottom edge of the LN₂ Dewar including the baffles: 77K (-196°C)
- Warm-up heaters OFF
- 40w external heat load
- No conductive path between the hub of the wheels and the center shaft bearings

3.2. Material Properties

- Al Aly
 Density: 2700 Kg/m³
- G-10
 Density: 1790 Kg/m³

Thermal Conductivity G-10

Specific Heat G-10
Sapphire
Density: 3970 Kg/m³
Specific Heat (Cp): 419 J/Kg-K

Thermal Conductivity Sapphire

<table>
<thead>
<tr>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>350</td>
</tr>
<tr>
<td>400</td>
</tr>
</tbody>
</table>

Thermal Surface Properties

<table>
<thead>
<tr>
<th>Description</th>
<th>Mat'l</th>
<th>Thickness</th>
<th>Emissivity</th>
<th>Thermal Surface Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS Mtg Plate Support</td>
<td>G-10</td>
<td>0.128</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Dewar Top Plate</td>
<td>Al Aly 6061</td>
<td>0.625</td>
<td>0.9</td>
<td>n/a</td>
</tr>
<tr>
<td>Dewar Walls</td>
<td>Al Aly 6061</td>
<td>0.25</td>
<td>0.05</td>
<td>n/a</td>
</tr>
<tr>
<td>MOS Wheel</td>
<td>Al Aly 6061</td>
<td>0.625</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Dekkar Wheel</td>
<td>Al Aly 6061</td>
<td>0.5</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>MLI Blanket</td>
<td>Aluminized Mylar</td>
<td>0.00025/each layer</td>
<td>e* = 0.02-0.05</td>
<td></td>
</tr>
</tbody>
</table>
4. ANALYSIS RESULTS

The results of the analysis are presented in the following Paragraphs 4.1 thru 4.3.

4.1. Residual LN₂ Boil-off Analysis Result

Assumptions:
1. Dewar is ½ full (11 liters)
2. Heat of Vaporization of LN₂ = 2.01E5 J/Kg (55.83 watt-hr/Kg)
3. Thermal Capacitance of LN₂ at ½ full: 495.6 watt-hr
4. Warm-up heater dissipation: 1500w

Therefore, time to boil off excess LN₂= 0.33hrs (19.8min.)

4.2. Warm-up Cycle Analysis Result

The results of the analysis Case 1 (Warm-Up Cycle) is depicted in Graph 1 below:

As depicted in Graph 1 above, the MOS wheel temperature reached above 20°C at 8950 Sec (2.5 Hrs.) after the initial warm-up.
4.3. Cooling Cycle Analysis Result
The results of the analysis Case 2 (Cooling Cycle) is depicted in Graph 2 below:

Graph 2. MOS Section Cooling Cycle Profile

As depicted in Graph 2 above, the MOS wheel temperature reached below 120K and was stabilized within 10K from its steady state temperature at 7360 Sec (2 Hrs.) after the initial cool-down.

5. CONCLUSION

This analysis has shown that the thermal cycle of the MOS section may be completed in approximately 4.8 hours, excluding the time to change MOS slit plates, (0.33hr to boil off excess LN$_2$, 2.5 hrs to warm-up, then 2.0 hrs to cool to the observation temperature).
To: George Nystrom
From: Sang Park (Thermal Engineer)
Date: 04 March 2005

CC: Brian McLeod, Paul Martini, Henry Bergner, Ken McCracken, Justin Holwell, Mike Buke, Tim Norton, John Boczenowski, Bill Podgorski

Subject: MOS Section Thermal Surface Finishes

Lens #1 & #2 Mount:
Science beam facing: Black Anodized or Equivalent
Note: Optical Reason

Guider Baffle Internal:
Black Anodized or Equivalent
Note: Optical Reason

Guider Baffle External:
- Chamber Facing: Polished Al or Aluminized Kapton Tape
- Wheel mount Facing: MLI Blanket

Cold Baffle Dekkar Wheel:
Wheel Facing: Black Anodized or Equivalent

Cold Baffle Dekkar Wheel:
Chamber facing: Polished Al or Aluminized Kapton Tape

Science Baffle External (Chamber facing):
Polished Al or Aluminized Kapton Tape

Science Baffle Internal:
Black Anodized or Equivalent
Note: Optical Reason

Other components:
Fill Tube Shield, Motors, etc:
Bare Metal or Low ε finish

Pickoff mirror/Mounts:
TBD

Mounting Plate:
Wheel Facing (Both MOS and Dekkar): Black Anodized or Equivalent
Chamber Facing: Polished Al
Cold Baffle MOS Wheel (TBD):
- Wheel Facing/Internal: Black Anodized or Equivalent

Dewar Bottom:
- MLI Blanket / Aluminized

Dewar Aperture: Black (Optical reason)

Dewar Side wall:
- MLI Blanket

Dewar Bottom:
- MLI Blanket / Aluminized

Bulkhead, Dewar facing:
- Polished Aluminum

Cold Baffle MOS Wheel (TBD):
- External: Polished Al or Aluminized Kapton Tape

Cold Baffle MOS Wheel (TBD):
- Wheel Facing/Internal: Black Anodized or Equivalent

MOS Wheel:
- Black Anodized or equivalent

Dekkar Wheel:
- Black Anodized or equivalent

G-10 Chamber Facing:
- MLI Blanket

Thermal Baffle (TBD):
- Polished Aluminum both sides / Aluminized Kapton tape

Chamber Internal wall: Bare Aluminum except G-10 facing potion: Polished Aluminum

Page 2 of 2
Subject: MMIRS Camera thermal analyses

1. SUMMARY/INTRODUCTION

A thermal analysis was performed to characterize the steady state and transient temperatures of the MMIRS Camera section. The analysis is presented in 2 folds, Steady State temperature predictions and Transient temperature predictions.

Steady State Design Requirements:
- Lens temperature shall be maintained at 80K +/- 3K at steady state condition
- Hold time greater than 40hours.

Transient Design Requirement:
- Maintain below the lens temperature gradient requirements, as depicted in Table 1 during the cool-down and warm-up of the instrument.

This analysis has shown that all lenses are expected to be between 77K (-196°C) and 83K (-190°C) at a steady state condition assuming that the LN₂ boiling temperature is at 77K. Also, the Grism assembly is expected to reach an average steady state temperature of 81K (192°C). Also, the transient response of the prisms located within the Grism assembly will be discussed in this report.

The Camera LN₂ Dewar is sufficient to provide at least 40 hours of hold-time, a design requirement. This analysis has calculated that approximately 35.4 watts of thermal load...
was absorbed from the environment via the natural convection on the chamber outer wall surfaces and through the conductive heat transfer at the bulkhead mounting points. Based on only the environment thermal load, the current design will provide 63.6 hours of hold-time at +25°C ambient with 50 liters of LN₂.

The results of the transient analysis has shown that the optical bench cooling rate (and warming rate) of 0.2°C/min (or less) is required to maintain the desirable temperature gradients within each lens.

<table>
<thead>
<tr>
<th>lens number</th>
<th>radial gradient</th>
<th>axial gradient</th>
<th>dimetral gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.18</td>
<td>46.30</td>
<td>222.22</td>
</tr>
<tr>
<td>4</td>
<td>1.39</td>
<td>48.31</td>
<td>555.56</td>
</tr>
<tr>
<td>5</td>
<td>3.97</td>
<td>42.74</td>
<td>370.37</td>
</tr>
<tr>
<td>6</td>
<td>4.83</td>
<td>222.22</td>
<td>1111.11</td>
</tr>
<tr>
<td>7</td>
<td>92.59</td>
<td>2777.78</td>
<td>22222.22</td>
</tr>
<tr>
<td>8</td>
<td>2.78</td>
<td>42.74</td>
<td>555.56</td>
</tr>
<tr>
<td>9</td>
<td>2.58</td>
<td>44.44</td>
<td>370.37</td>
</tr>
<tr>
<td>10</td>
<td>3.58</td>
<td>113.38</td>
<td>1234.57</td>
</tr>
<tr>
<td>11</td>
<td>2.47</td>
<td>44.44</td>
<td>358.42</td>
</tr>
<tr>
<td>12</td>
<td>3.83</td>
<td>48.31</td>
<td>483.09</td>
</tr>
<tr>
<td>13</td>
<td>2.22</td>
<td>46.30</td>
<td>252.53</td>
</tr>
<tr>
<td>14</td>
<td>5.05</td>
<td>156.49</td>
<td>1221.00</td>
</tr>
</tbody>
</table>

Though the IR Detector is located in the Camera section of the instrument, the thermal performance of the detector will be a subject of a separate report.

2. CAMERA THERMAL DESIGN

Shown in the Figures 1 thru 4 are the thermal design features that are relevant to this analysis. The Camera assembly includes as a part of the thermal design the following features:
The following paragraphs describe the details of the thermal features.

2.1. LN2 Dewar

The Camera section LN2 Dewar is constructed from Aluminum Alloy 6061-T6 with an equivalent 1.5” thick top plate also serving as an optical bench for the camera lens assemblies, Grism assembly, and the IR detector. The walls of the Camera Dewar are 0.25” thick and there are also three (3) internal baffles/stiffeners that are 0.25” thick. The internal baffles, in addition to being a structural stiffener, will serve as a conductive path from LN2 to the top plate during the science observation period.

2.2. G-10 Thermal Isolation

An isolation cylinder made from G-10 is used in the design to thermally isolate the Dewar and associated cold components from the warm environment. The G-10 isolation
cylinder is assumed to be 0.128” thick and has bonded aluminum mounting rings at the each end which are secured to Dewar and optical bench support plate.

2.3. Sapphire Balls
As a part of the mechanism designs, a set of sapphire balls are used between Grism wheels. These sapphire balls (3mm diameter during this analysis) have high thermal conductivity at a low temperature (see Section 3.2 Material Properties) which enhance thermal conductance from to the wheels.
2.4. Thermal Shields

2.4.1. Overall Thermal Shield
The overall thermal shield as shown in Figure 4 is constructed from Aluminum Alloy, 0.040” thick and is finished with a thermal surface emissivity value of 0.1 or less on both surfaces. The external walls of the overall thermal shield are assumed to be covered with 10 layer Multi-Layer Insulation (MLI) thermal blankets to further insulate the camera section from the environmental effects. The MLI thermal blanket is made mostly of 0.0025” aluminized Mylar separated by Dacron mesh and effective emissivity is assumed to be 0.03.

2.4.2. Lens Assembly Cold-Shield
The lens housing assemblies for lens 3-8 and 9-14 are shrouded in cold thermal shields as illustrated in Figures 1 & 2. They are constructed from Aluminum Alloy, 0.125” thick and are finished with a thermal surface emissivity value of 0.05 (Aluminized Kapton Tape, Aluminum side exposed) on the overall thermal shield facing side. The inner surface of the cold-shield is finished with black anodize, an equivalent emissivity value of 0.9.
2.4.3. Warm-up Heater
The warm-up heaters are constructed from a thin low-outgassing Kapton insulator and they are intimately mounted on the walls of the Dewar. The heaters are sized to dissipate 1500 watts and will be controlled by an Omega Heater controller in conjunction with an external power supply sufficient enough to provide 1500 watts to the heaters. The heaters will have ON/OFF set points at +25/+27°C and be able to control the warming rate to 0.2°C/min or less.

3. THERMAL MATH MODEL/THERMAL ANALYSIS

A detailed system level Camera thermal math model was generated and is depicted in the Figures 5 and 6 below. The thermal model was generated using Thermal Desktop® as a pre-and post processors. The thermal radiation heat transfer was calculated using RadCAD®. The temperatures were predicted using SINDA finite difference solver.

Included in the thermal model are the Camera vacuum Chamber, lens 3-8 assembly, lens 9-14 assembly, Grism wheel assembly, camera Dewar assembly, optical bench with a support plate and gussets, G-10 isolation ring assembly, thermal shields, and the instrument bulkhead.

Figure 5. Detailed MMIRS Camera Overall Thermal Math Model, Cross-Sectional View
(Parts of the model not shown for clarity)
3.1. GRISM Assembly (Prism 41-degree)
A separate thermal math model of the 41-degree Prism (Material: CaF₂), a part of the GRISM Assembly) was generated as depicted in Figure 7.

Figure 6. Detailed Camera Section, Lens 3-8 Thermal Math Model (Parts of the model not shown for clarity)

Figure 7. A separate detailed Thermal Math Model of the 41-Prism
3.2. Analysis Assumptions
3.2.1. The following are the list of assumptions used during the steady state analysis.
- **Boundary temperatures:**
 - Bulkhead Mounting points = +25°C
 - Local Ambient Air Temperature: +25°C
 - Convective heat transfer Coefficient = 0.00366 w/in² °C (5.67 w/m² °C)
 - At 10k feet altitude
 - No thermal radiation heat transfer from the outer shell to the local ambient.
 - Bottom edge of the LN2 Dewar including the baffles: 77K (-196°C)
- No conductive path between the hub of the Grism wheels and the center shaft bearings.

3.2.2. The following are the list of assumptions used during the transient analysis.
- **Boundary temperatures:**
 - Bulkhead Mounting points = +25°C
 - Local Ambient Air Temperature: +25°C
 - Convective heat transfer Coefficient = 0.00366 w/in² °C (5.67 w/m² °C)
 - At 10k feet altitude
 - No thermal radiation heat transfer from the outer shell to the local ambient.
 - LN2 Dewar including the baffles: 77K (-196°C)
- All initial temperatures are +25°C (298K)
- No conductive path between the hub of the Grism wheels and the center shaft bearings.

3.3. Material Properties
- Al Aly
 - Density: 2700 Kg/m³
- **G-10**
 Density: 1790 Kg/m3

![Thermal Conductivity G-10](image1)

![Specific Heat G-10](image2)

- **Sapphire**
 Density: 3970 Kg/m3
 Specific Heat (Cp): 419 J/Kg-K

![Thermal Conductivity Sapphire](image3)

- **CaF$_2$ (Lens 3, 4, 8, and Prisms)**
 Density: 3180 Kg/m3

![Thermal Conductivity Ca F2](image4)

![Specific Heat CaF2](image5)
• Fused Quartz (Lens 7)
 Density: 2210 Kg/m3

![Thermal Conductivity FQTZ](image1)

![Specific Heat FQTZ](image2)

• BaF$_2$ (Lens 5)
 Density: 4890 Kg/m3
 Thermal Conductivity: 11.72 w/m-K
 Specific Heat: 410 J/Kg-K

• ZnSe (Lens 6)
 Density: 5270.0 Kg/m3
 Thermal Conductivity: 18 w/m-K
 Specific Heat: 339 J/Kg-K

• Contact Resistance
 - The following heat transfer coefficient value was obtained as per
 Reference 4* to calculate the contact conductance between the axial lens
 mounts and the lens: 1000 w/m2-K

 Aerospace Press/AIAA, 2002, P259, Figure 8.11 Generalized heat-transfer coefficient vs. pressure
 for aluminum in vacuum.
Bolted interfaces
 The following thermal conductance values were obtained as per Reference 4** to calculate the heat transfer across the bolted interface based on different bolt sizes.
 - Screw 6-32: 0.42 w/K
 - Screw 8-32: 0.80 w/K
 - Screw 10-32: 1.32 w/K
 - Screw ¼-28: 3.51 w/K

Thermal Surface Properties
Further detailed descriptions of the thermal surface may be found in Reference 1, Camera Section Thermal Surface Finishes.
4. ANALYSIS RESULTS

The results of the analysis are presented in the following paragraphs. The results are presented in 2 parts, namely, steady state temperatures and transient temperature profiles.

4.1. Steady State Temperatures

Illustrated in the following figures 8 thru 10 are the steady state temperatures of the camera section.

![Figure 8. Steady State Temperature of Lens 3-8 (Cross Sectional View Shown)](image-url)
Figure 9. Steady State Temperature of the Major Structures of the Camera

Figure 10. Steady State Temperatures of the Overall Cold-Shield
Using the boundary condition derived from the system level model, the detailed thermal math model of the 41-degree Prism predicted the following results as shown in Figure 10 and 10a.

In addition to the steady state temperature, the thermal math model of the Camera section has predicted that 35.4 watts of thermal load was absorbed from the environment. Based on the energy balance from the model, a total of 7.9 watts were conducted in from the bulkhead mounting points and 27.5 watts were absorbed via convective heat transfer to the Camera vacuum chamber outer walls.
4.2. Transient temperature Profiles

The transient results are presented in 2 parts:
- Case 1. During the cooling period of the Camera section.
- Case 2. During the warming period of the Camera section.

As stated previously, the requirement for the transient analysis is to maintain the lens temperature gradient below the requirements as depicted in Table 1 during the cool-down and warm-up of the instrument. As seen from the Table 1 the Lens 3 and 4 have the tightest temperature gradient requirements thus the presented results of this analysis are limited to those lens.

Also worth noting is that the transient temperature profile of the prisms in the Grism assembly is a subject of a separate report.

4.2.1. Case 1: The cooling profile of the Camera Lens.

The results of a parametric study as a part of the cooling period are presented herein. This parametric study was performed to compare the lens temperature gradients as a result of the optical bench cooling rate at 0.5°C/min (Case 1.1) and 0.2°C/min (Case 1.2).

4.2.1.1. Case 1.1: Camera Optical Bench Cooling rate at 0.5°C/min

Shown in Graph 1 and Figure 10 are the transient temperature response of the Lens 3 during a cooling down rate at 0.5°C/min. Shown in Graph 2 and Figure 11 are the transient temperature response of the Lens 4 during a cooling down rate at 0.5°C/min. However, it is evident that the cooling rate of 0.5°C/min will produce temperature gradients that are not acceptable when compared with the design requirements.
GRAPH 1: Lens #3, Camera Optical Bench Cooling rate at 0.5C/min
(Temperature K vs. Time Sec.)

<table>
<thead>
<tr>
<th>Temperature Differences</th>
<th>E1</th>
<th>E2</th>
<th>E2-E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>245.3</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>C2</td>
<td>245.1</td>
<td>5.0</td>
<td>0.8</td>
</tr>
<tr>
<td>C1-C2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10. Lens 3 Temperature distributions during cool-down rate at 0.5C/min
GRAPH 2: Lens #4, Camera Optical Bench Cooling rate at 0.5C/min (Temperature K vs. Time Sec.)

<table>
<thead>
<tr>
<th>Temperature differences</th>
<th>E1</th>
<th>E2</th>
<th>E2-E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>211.6</td>
<td>3.0</td>
<td>0.4</td>
</tr>
<tr>
<td>C2</td>
<td>211.6</td>
<td>3.0</td>
<td>0.4</td>
</tr>
<tr>
<td>C1-C2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11. Lens 4 Temperature distributions during cool-down rate at 0.5C/min
4.2.1.2 Case 1.2: Camera Optical Bench Cooling rate at 0.2°C/min

Shown in Graph 3 and Figure 12 are the transient temperature response of the Lens 3 during a cooling down rate at 0.2°C/min. Shown in Graph 4 and Figure 13 are the transient temperature response of the Lens 4 during a cooling down rate at 0.2°C/min.

GRAPH 3: Lens #3, Camera Optical Bench Cooling rate at 0.2°C/min

(Temperature K vs. Time Sec.)

TABLE:

<table>
<thead>
<tr>
<th>Node</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lens Edge</td>
<td>229.5</td>
</tr>
<tr>
<td>Lens Center</td>
<td>231.9</td>
</tr>
</tbody>
</table>

Figure 12. Lens 3 Temperature distributions during cool-down rate at 0.2°C/min
Figure 13. Lens 4 Temperature distributions during cool-down rate at 0.2C/min.
4.2.2. Case 2: The warming profile of the Camera Lens

Shown in Graph 5 and Figure 14 are the transient temperature response of the Lens 3 during a warming rate at 0.2°C/min. Shown in Graph 6 and Figure 15 are the transient temperature response of the Lens 4 during a warming rate at 0.2°C/min.

GRAPH 5: Lens #3, Camera Optical Bench Warming rate at 0.2C/min
(Temperature K vs. Time Sec.)

![Graph showing temperature response](image)

<table>
<thead>
<tr>
<th>Temperature differences</th>
<th>E1</th>
<th>E2</th>
<th>E2-E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>254.0</td>
<td>-2.6</td>
<td>0.5</td>
</tr>
<tr>
<td>C2</td>
<td>254.1</td>
<td>-2.5</td>
<td>0.4</td>
</tr>
<tr>
<td>C1-C2</td>
<td>-0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 14. Lens 3 Temperature distributions during warm-up rate at 0.2C/min
GRAPH 6: Lens #4, Camera Optical Bench Warming rate at 0.2C/min (Temperature K vs. Time Sec.)

Temperature differences

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E2-E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>272.2</td>
<td>272.5</td>
<td>-1.1</td>
</tr>
<tr>
<td>C2</td>
<td>272.3</td>
<td>272.5</td>
<td>-0.3</td>
</tr>
<tr>
<td>C1-C2</td>
<td>272.2</td>
<td>272.3</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

Figure 15. Lens 4 Temperature distributions during warm-up rate at 0.2C/min
4.2.3. Grism Transient analysis results

Shown in Graph 7 is the result of transient analysis of 41-degree prism during a cool-down rate of 0.2°C/min.

GRAPH 7: Grism Assembly Transient Cooling Profile
(Temperature K vs. Time Sec.)

5. CONCLUSION / RECOMMENDATION

5.1. Steady State Analysis

This analysis has shown that all lens are expected to be between 77K (-196°C) and 83K (-190°C) at a steady state condition with the LN₂ boiling temperature is at 77K. This satisfies the steady state lens temperature requirement of 80.0 +/-3K. Also, the Grism assembly is expected to reach at an average steady state temperature of 81K (-192°C).

The Camera LN₂ Dewar is sufficient to provide at least 40 hours of hold-time, a design requirement. This analysis has calculated that approximately 35.4 watts of thermal load was absorbed from the environment via the natural convection on the chamber outer wall surfaces and through the conductive heat transfer at the bulkhead mounting points. Based
on only the environment thermal load, the current design will provide 63.6 hours of hold-time at +25°C ambient with 50 liters of LN$_2$.

5.2. Transient Analysis

This analysis has assumed that the optical bench temperature may be controlled at a specified rate and also that there’s no temperature gradient within the optical bench. The results of the transient analysis has shown that the optical bench cooling rate must be less than 0.2°C/min in order to maintain the desirable temperature gradients within each lens as depicted in Table 1. The Lens 3 is required to be maintained less than 2.18°C radial gradient and this analysis has predicted the worst case gradient to be 2.9°C, slightly above the requirement. The Lens 4 is required to be maintained less than 1.39°C radial gradient and this analysis has predicted the worst case gradient to be 1.5°C, slightly above the requirement.

Also, during the warming period, the warming rate must be less than 0.2°C/min in order to maintain the desirable temperature gradients within each lens. The Lens 3 is required to be maintained less than 2.18°C radial gradient and this analysis has predicted the worst case gradient to be 2.6°C, slightly above the requirement. The Lens 4 is required to be maintained less than 1.39°C radial gradient and this analysis has predicted the worst case gradient to be 1.4°C.

Due to the sensitive nature of the lens materials, it is strongly recommended that a thermal test be performed before the final instrument is built to further understand the thermal transient behaviors of the instrument.
To: George Nystrom
From: Sang Park (Thermal Engineer)
Date: 28 March 2005

CC: Justin Holwell, Brian McLeod, Paul Martini, Henry Bergner, Ken McCracken, Mike Buke, Tim Norton, John Boczenowski, Bill Podgorski

Subject: MMIRS Camera Section Thermal Surface Finishes

G-10 Thermal Isolation Ring Assembly:
- Inner Diameter: Aluminized Kapton Tape, Aluminum Facing
- Outer Diameter: Aluminized Kapton Tape, Aluminum exposed

Support Plate Optical Bench:
- Machine Finish + Clear Iridite
 (Near and Far-side)
Lens 3-8 Assembly:
- Lens Mount Housing Assembly:
 - Aluminized Kapton Tape,
 - Aluminum exposed (Visible Surface)

Cold Shield:
- Visible Surface:
 - Aluminized Kapton Tape
- Inside Surface: Black Anodize

GRISM Wheel Housing:
- Visible Surface: Aluminized Kapton Tape, Aluminum Facing
- Inside, wheel Facing Surface: Black Anodize

Dewar (Bulkhead facing):
- Machine Finish + Clear Irridite
- Preferred: Aluminized Kapton Tape, Aluminum Facing

Optical Bench / Dewar:
- Machine Finish + Clear Irridite

Lens 9-14 Assembly:
- Cold Shield:
 - Visible Surface:
 - Aluminized Kapton Tape
 - Inside Surface: Black Anodize
Lens 3-8 Assembly:
Inside Surfaces: Black Anodize
(Cold shield removed for clarity)

Lens Mount Housing Assembly:
Aluminized Kapton Tape
(Visible Surface)

GRISM Wheel Assembly:
All Internal Surfaces: Black Anodize

Lens 9-14 Assembly:
Inside Surfaces: Black Anodize
(Cold shield removed for clarity)

Optical Bench / Dewar:
Machine Finish + Clear Iridite
Domed Camera Bulkhead: Machine Finish + Clear Iridite (Near and Far sides)

Detector Assembly: TBD

Vee-Blocks (Typ.):
- Near Side Only: Black Anodize
- Near and Far Sides: Black Anodize (Bottom)

Vee-Blocks (Typ.):
- Near Side Only: Machine Finish + Clear Iridite
- Near and Far Sides: Machine Finish + Clear Iridite
Support Plate Optical Bench: Machine Finish + Clear Irridite (Near and Far-side)

Optical Bench Gussets: Machine Finish + Clear Irridite all Surfaces

Thermal Shield: Machine Finish + Clear Irridite (Near and Far-side)

Bulkhead: Machine Finish + Clear Irridite (Near and Far-side)

Thermal Shield: Covered in 10 layer Thermal Blankets
Thermal Shield Access Cover:
Near side, visible Surface: Machine Finish + Clear Irridite
Far side, visible Surface: Aluminized Kapton Tape, Aluminum exposed

Vacuum Chamber Outer Wall:
Machine Finish + Clear Irridite (Near and Far-side)

Vacuum Chamber Access Cover:
Near side, visible Surfaces:
Machine Finish + Clear Irridite
Section VII.7

Camera-Detector Steady State and Transient Analysis

This document will be available at the CDR.
Section VII.8

Temperature and Stress Distribution in Optics

This document will be available at the CDR.
Section VIII.

MMIRS Electrical Design

1. IR Array Electronics
2. Instrument Electronics
 - Overview
 - Block Diagrams
 - External Connections
 - Motion Control
 - Power Control Assignments
 - Temperature Control and Monitoring
 - Science Detector Thermal Control
 - Ethernet Connected Devices
 - Vacuum Pump Control
 - Emergency Stop (E-Stop)
 - Wheel Advance Control
 - Scanner
 - Grounding Plan
 - Interconnect Methodology
 - Overall Signal Flow Example
3. Instrument Electronics Rack Packaging
4. Electronics Rack Thermal Analysis
IR Array Electronics

System Overview and Grounding Scheme

Figure 1 shows a cartoon for the overall physical layout of the electronic system which hooks to and controls the Hawaii-2 NIR imager. The signals to and from the cold imager are conducted using 5-mil twisted-pair constantan wiring, terminating on four hermetic connectors soldered to four external preamplifier modules spaced around a heavy steel mount ring. This mount ring serves as system ground for the camera system, and will be electrically isolated from the rest of the structure and associated electrical grounds. The rest of the camera controller and associated power supplies will reference to this ground.

Fig. 1. Camera System overview and grounding scheme.

Imager Mount and Header Board

The Hawaii-2 imager plugs into a Yamaichi zero-insertion force (ZIF) socket, soldered to a 7-inch diameter cold header printed circuit board (PCB). This assembly serves the functions of routing signals to and from the imager, lateral and axial support for the spring-loading of the imager array against its precision locating structure, and as the main cooling mechanism for the imager and buffer amplifiers. A front view of the PCB artwork is shown in Figure 2.
In the above view, only the front and back artwork are displayed to cut down on clutter. The actual board has eight layers, four plane and four routing. Two of the plane layers serve as cooling planes and conduct heat away from the inner 15 X 15 portion of the imager pin grid array to the two cold strap pads. In addition, there are planes for system ground and for VDDA (analog power for both imager and buffer amps). These latter two planes are isolated for each quadrant. A precision temperature sensor is clamped to the two cooling planes near the imager, and four 10W 10-ohm heater resistors are wired in series and thermally fasten to the cooling planes. The latter serve to both provide heating for safe warmup of the system for servicing and to provide temperature stabilization of the array while observing.

With the exception of the eight digital drive signals that run the imager multiplexer, all other bias and power voltages are generated by precision sources separately for each quadrant in order to minimize electronic crosstalk between quadrants, a scheme that we tested on the SAO Wide-field IR Camera (SWIRC) with good results. All signals to and from each quadrant are handled through a Positronic connector. Around each of these are...
grouped the nine buffer amplifiers (8 video and 1 dummy pixel). A schematic drawing of this portion of the header PCB is shown below in Fig. 3.

Fig. 3. Schematic of signals to and from the four quadrants of the Hawaii-2 imager. All critical ground and bias voltages are separate for each quadrant.

The ultra-low noise JFET LSK170 is used in source-follower configuration, with the source loads being the inputs to the preamplifiers, outside the hermetic connectors. These JFETs have been tested at 77K and seem to function well there. Unlike SWIRC, which used cold CMOS opamps that dissipated about 380mW on the header board, the above configuration should produce negligible heating of the imager, both because the total dissipation is just 80mW and because more care is being used to connect to each output pin with a relatively long, very thin (6 mil) trace on the header PCB. We also expect that the heat extraction from the two cooling planes, hard clamped to the cold
support structure via flexible strapping, will be more efficient than what was used on SWIRC, which used a mechanical heat switch.

Preamplifier and Bias Voltage Boards

These four PCBs sit just outside the vacuum wall. They are soldered to the external pins of a standard 26-pin hermetic bulkhead connector. A view of the artwork for one of these 6-layer PCBs is shown in Figure 4.

![Fig. 4. Preamplifier and Bias PCB (6-layer, 3 routing and 3 planes).](image)

Each of the nine preamplifiers per board serves to remove the rough DC offset coming from the DC-coupled cold buffer source followers and multiply the result by a gain factor of about five (settable by changing out feedback resistors). In addition, Channel 9 coming from the dummy reference pixel on the imager is multiplexed with Channel 1 video as the 129th pixel in each row, so that just eight video lines per quadrant are carried forward to the A/D boards in the camera controller, a scheme that has been successfully used on SWIRC.

In a significant change from SWIRC, we are going to generate precision, low-drift, low-noise bias and analog power voltages for each of the quadrants on this PCB. The four critical voltages are VDDA, VDD, VRESET, and BIASGATE, and they will all derive from a precision voltage reference rather than being generated on the driver board of the main camera controller. VDDA and VDD are fixed by imager specification to be +5.25V and +5.00V respectively, while VRESET and BIASGATE are variable. Once optimal values are established for the latter two, we intend to lock them down with fixed resistor dividers, as these values should not need routine adjustment in the field.

A schematic for this PCB is shown in Figure 5.
Fig. 5. Schematic of the Preamplifier and Bias PCB, soldered to each of the four hermetic connectors that serve each quadrant of the imager. Each preamplifier channel has its own local power regulation to maintain good signal separation, and the variable offsets for each channel derive from a precision voltage reference.
In addition to preamplification and bias voltage generation, filtered buffer amplifiers are provided for the digital drive signals that operate the imager multiplexer, two channels per board. These signals are common to all four quadrants of the imager, as our experience with SWIRC has shown that this scheme does not contribute any significant crosstalk between quadrants.

Camera Controller and Data Acquisition

The camera controller and data acquisition interface is a copy of what we are already using on the SWIRC camera on the MMT. This in turn is a direct derivative of the CCD controller that is has been used at all our telescopes for the past few years. The system was developed from the start to be simply extensible to very many readout channels, up to and including the 72-channel SAO Megacam, running all channels simultaneously at a pixel rate of 200kHz. Data acquisition and camera control is handled by a fiber-optically coupled commercial interface module from EDT, which mounts on the I/O board of the camera control unit.

All signals and power connections coming from and going to the camera controller will be carried on RG-174 coax cabling to each of the four Preamp/Bias modules. There is a 37-pin D-connector on the bottom of the backplane that supplies all required DC voltages and also the digital drive signals for the imager multiplexer. Each 4-channel video section also has a dedicated 25-pin D-connector on the backplane.

All software for camera control, data acquisition, and image analysis is now in place and has several years of development and heritage.

The MMIRS camera controller uses an identical board set to SWIRC, because we printed up enough PCBs to build two complete sets plus a few spare boards. A picture of the board set in shown in Figure 6. Only one of the eight 4-channel A/D boards is in the picture. The rest are nearing completion of part assembly in our lab.
The critical task of taking the 32-channel video outputs from the preamplifier modules and converting to digital information is accomplished on the A/D boards. Each of the eight boards carries four synchronous analog processing channels. To ensure maximum channel separation, each channel has low-noise voltage regulation for the +/- 15V power planes, as well as both analog and digital +5V regulation for each A/D converter. A schematic diagram for one of the 32 A/D signal processing channels is shown in Figure 7.
Fig. 7. Schematic of one channel of signal processing and A/D conversion. Low-noise components are used wherever possible. Fine control of DC offset is provided under computer control, and a gated integrator is used to optimally suppress high-frequency noise. The AD7679 converter is an 18-bit unit but only the top 16 bits are used, giving a net digitization noise of much less than 1 LSB. All 32 channels are processed and digitized simultaneously, with the 16-bit parallel data being strobed into the 16541 latches in the lower right. This data is then presented to the data bus (AD0-15) sequentially for each of the 32 channels for transmission through the EDT camera interface to the data acquisition computer, the transmission being accomplished in less than one pixel time, in time for the next pixel data to be latched.
SWIRC Performance and MMIRS Improvements

The realized performance so far with SWIRC is:
30e- read noise with one pair of reads
0.7sec frame rate (32-channels)
180000 e- full well
4.0 e-/adu gain
BIASGATE was 3.3-3.4V
VRESET was 0.5-1.0 V

It was noted above that drift and low-frequency noise in the latter two voltages are of some concern in getting the best read-noise performance from the Hawaii-2 imager. This is especially true of BIASGATE, as it feeds through to the output video with at least unity gain and perhaps higher. For this reason, these critical voltages will be derived from especially quiet, low-drift precision sources for MMIRS.

Also of great importance for achieving the best noise floor performance will be a more intensive effort to track low-frequency drift in the imager itself, as this is a dominant noise source. The reference pixel on the Hawaii-2 imager was provided for this purpose, and we intend to digitize it in our data train, but it is known that the implementation in Hawaii-2 was flawed and that most users of this device now ignore this information. What may prove to be more useful in tracking imager drifts are defective dark pixels in the image area. Extensive testing of methods for deriving electronic drifts from this information is planned.
MMIRS Electrical System

Mike Burke
Smithsonian Astrophysical Observatory
Central Engineering
1815 Massachusetts Ave
Cambridge, MA USA
1. Electrical System overview

The MMIRS electrical system is housed in two instrument mounted racks containing all control electronics for the system. One rack contains all motion control and provides the interface to facility power, network connectivity, and science fiber data links. The second rack contains all temperature, vacuum control, and the science detector electronics. Each rack houses a guider/wave front sensor detector electronics interface. The science detector has pre-amplifiers off-rack near the detector to minimize noise, as do the guider wave-front sensor CCDs.

Rack 1 contains all motion control electronics, provides all external connections and the system ground reference. A Delta-Tau UMAC compact PCI motion control system is paired with Phytron stepper drives to provide control of all axes. The Delta-Tau system has been deployed on many SAO instruments and takes advantage of large code base and will also minimize the “learning curve” portion of the software and support efforts. The Phytron drives have built in diagnostics and setup, providing both flexibility in implementation and the diagnostic information needed to minimize risk. The drives are connected to the network and provide motor & amplifier temperature, bus voltage and run current. Rack 1 also provides for safety interlock combining inputs from Rack 2, an external MKS instruments differential pressure gauge and the motion control system. The connection to a serial barcode reader is also on Rack 1.

Rack 2 houses temperature and vacuum control, and the science detector interface. Temperature control of the detector is provided by a Lakeshore 321 controller, and cryostat temperatures are monitored using two Lakeshore model 218s monitors. Chamber warm-up and cool down control is provided by three Omega Ethernet connected temperature controllers. Three Pfeiffer vacuum gauges are controlled by a Pfeiffer controller mounted in the rack. Vacuum pump control is provided by means of switched power to an externally mounted scroll pump and a rack mounted Varian turbo pump controller. Relay outputs from the Lakeshore, Pfeiffer and Varian controllers are routed to Rack 1 for interlock functions and read-out by the Delta-Tau system.

Features common to both racks are identical Guider/Wavefront sensor interfaces, and rack temperature monitoring. Each rack contains a power supply and interface electronics box that connects to the CCD pre-amp systems in the Guider cameras. Both racks also contain an Acromag 6 channel temperature monitor for rack temperature monitoring.

The following three pages show the overall electrical system diagram, followed by the rack diagrams.
2. External connections

To simplify the cabling to the instrument a minimum number of external connections are used. The AC input of the instrument connects to the UPS power provided at the site. The instrument mounted racks are controlled by an off-instrument rack mounted computer system connected by fiber gigabit Ethernet. Three additional fibers provide connections to the IR array controller and the two guider CCD controllers.

<table>
<thead>
<tr>
<th>Function</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Line In-Single Phase 110VAC Line In</td>
<td>Keyed Three wire AC Outlet</td>
</tr>
<tr>
<td>Gigabit Fiber Ethernet-Primary network connection</td>
<td>SC</td>
</tr>
<tr>
<td>10/100 Ethernet- Alternate network connection</td>
<td>Standard RJ-45</td>
</tr>
<tr>
<td>Science Fiber</td>
<td>SC</td>
</tr>
<tr>
<td>Guider-wavefront sensor 0 fiber-MT-RJ Panel Jack</td>
<td>MT-RJ</td>
</tr>
<tr>
<td>Guider-wavefront sensor 1 fiber-MT-RJ Panel Jack</td>
<td>MT_RJ</td>
</tr>
</tbody>
</table>
3. Motion Control
The motion control system is a compact PCI (cPCI) version of the Delta-Tau UMAC system used by SAO in other instruments. All of the motion axes are driven by Phytron stepper motors and amplifiers. The Phytron drivers are mounted in three 4u 19 inch rack mount boxes. The seven “cold” axes use the same Phytron cryo-vac qualified motor, while the 8 Guider/Wavefront axes use a standard Phytron motor, four of which will be equipped with a brake. The Phytron driver provides for intelligent setup and control of motor run parameters and readout of motor temperature, bus voltage and current. The setup of the drives is provided by a serial interface on each Phytron box, which in turn connects to a serial to Ethernet converter. The Delta-TAU system provides real-time motor direction and control.

The system shown above is a 3U half-rack system comprised of system CPU, motion control and digital I/O. From left to right the modules shown are as follows, System Power, two ACC-11C Isolated 32-input / 16-output digital interface boards, four ACC24C2 4 axis analog servo and stepper interface boards, and a 240MHz control CPU with 10/100 Ethernet.
Phytron Motor control

All motion axis are controlled by Phytron PAB93-70 programmable drives with motor temperature measurement option in a 6 slot 4u rack mounted 19 inch enclosure. MMIRS uses three of the drive boxes. Each box provides an RS-232 port for connection to the system for setup and parameter data logging. The drives run, boost and stop current and stepping modes are setup via this interface. The drives also provide measurements of bus voltage, Motor current, drive amplifier and motor temperature. The delta-Tau system drives the amplifiers pulse, direction and boost pins, and reads the amplifier fault status to implement closed loop control. All data logging and setup is performed by the off-instrument control computer through the RS-232 ports which in turn connect to the EDAS RS-232 to Ethernet converter.
Delta-Tau Assignments

Delta-Tau axis assignments

<table>
<thead>
<tr>
<th>Number</th>
<th>Function</th>
<th>Phytron</th>
<th>Delta-Tau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis1</td>
<td>MOS Section - Dekker wheel</td>
<td>Phytron0-ch1</td>
<td>Axis card 0 ch 0</td>
</tr>
<tr>
<td>Axis2</td>
<td>MOS Section - Slit Mask</td>
<td>Phytron0-ch2</td>
<td>Axis card 0 ch 1</td>
</tr>
<tr>
<td>Axis3</td>
<td>Camera Section - Vacuum valve</td>
<td>Phytron0-ch3</td>
<td>Axis card 0 ch 2</td>
</tr>
<tr>
<td>Axis4</td>
<td>Camera Section - Filter wheel 1</td>
<td>Phytron0-ch4</td>
<td>Axis card 0 ch 3</td>
</tr>
<tr>
<td>Axis5</td>
<td>Camera Section - Filter wheel 2</td>
<td>Phytron0-ch5</td>
<td>Axis card 1 ch 0</td>
</tr>
<tr>
<td>Axis6</td>
<td>Spare</td>
<td>Phytron0-ch6</td>
<td></td>
</tr>
<tr>
<td>Axis7</td>
<td>Camera Section - Grism wheel</td>
<td>Phytron1-ch1</td>
<td>Axis card 1 ch 1</td>
</tr>
<tr>
<td>Axis8</td>
<td>Camera Section - Detector Focus</td>
<td>Phytron1-ch2</td>
<td>Axis card 1 ch 2</td>
</tr>
<tr>
<td>Axis9</td>
<td>GWFS0 X</td>
<td>Phytron1-ch3</td>
<td>Axis card 1 ch 3</td>
</tr>
<tr>
<td>Axis10</td>
<td>GWFS0 Y</td>
<td>Phytron1-ch4</td>
<td>Axis card 2 ch 0</td>
</tr>
<tr>
<td>Axis11</td>
<td>Spare</td>
<td>Phytron1-ch5</td>
<td></td>
</tr>
<tr>
<td>Axis12</td>
<td>GWFS0 Z</td>
<td>Phytron1-ch6</td>
<td>Axis card 2 ch 1</td>
</tr>
<tr>
<td>Axis13</td>
<td>GWFS0 Focus</td>
<td>Phytron2-ch1</td>
<td>Axis card 2 ch 2</td>
</tr>
<tr>
<td>Axis14</td>
<td>GWFS1 X</td>
<td>Phytron2-ch2</td>
<td>Axis card 2 ch 3</td>
</tr>
<tr>
<td>Axis15</td>
<td>GWFS1 Y</td>
<td>Phytron2-ch3</td>
<td>Axis card 3 ch 0</td>
</tr>
<tr>
<td>Axis16</td>
<td>GWFS1 Z</td>
<td>Phytron2-ch4</td>
<td>Axis card 3 ch 1</td>
</tr>
<tr>
<td>Axis17</td>
<td>GWFS1 Focus</td>
<td>Phytron2-ch5</td>
<td>Axis card 3 ch 2</td>
</tr>
<tr>
<td>Axis18</td>
<td>Spare</td>
<td>Phytron2-ch6</td>
<td></td>
</tr>
</tbody>
</table>

Delta Tau connections

For Axis 1-7 (Cryostat)

<table>
<thead>
<tr>
<th>Source</th>
<th>Delta-Tau Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor HOME Switch</td>
<td>HOME</td>
<td>zero when in home position</td>
</tr>
<tr>
<td>Motor DETENT Switch</td>
<td>USER</td>
<td>zero when in detent</td>
</tr>
<tr>
<td>Phytron FAULT Status</td>
<td>FAULT</td>
<td>One when drive in fault</td>
</tr>
<tr>
<td>LVDT (Camera focus only)</td>
<td>Analog input 1</td>
<td>Voltage proportional to position</td>
</tr>
</tbody>
</table>

For Axis 8-15 (Guider/WFS)

<table>
<thead>
<tr>
<th>Source</th>
<th>Delta-Tau Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder A</td>
<td>ENCA</td>
<td>Encoder inputs</td>
</tr>
<tr>
<td>Encoder B</td>
<td>ENCB</td>
<td>Encoder inputs</td>
</tr>
<tr>
<td>Encoder C</td>
<td>ENCC</td>
<td>Encoder inputs</td>
</tr>
<tr>
<td>PLIM</td>
<td>PLIM</td>
<td>Postive travel limit, at limit when zero</td>
</tr>
<tr>
<td>MLIM</td>
<td>MLIM</td>
<td>Negative travel,at limit when zero</td>
</tr>
</tbody>
</table>
Delta-Tau Assignments

<table>
<thead>
<tr>
<th>IN</th>
<th>Digital IO Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN0</td>
<td>Estop Button state</td>
</tr>
<tr>
<td>IN1</td>
<td>Computer/Manual button state</td>
</tr>
<tr>
<td>IN2</td>
<td>Advance wheel switch state</td>
</tr>
<tr>
<td>IN3</td>
<td>Temp alarm0</td>
</tr>
<tr>
<td>IN4</td>
<td>Temp alarm1</td>
</tr>
<tr>
<td>IN5</td>
<td>Temp alarm2</td>
</tr>
<tr>
<td>IN6</td>
<td>Temp alarm3</td>
</tr>
<tr>
<td>IN7</td>
<td>Vacuum valve relay status0</td>
</tr>
<tr>
<td>IN9</td>
<td>Vacuum valve relay status1</td>
</tr>
<tr>
<td>IN10</td>
<td>Vacuum valve relay status2</td>
</tr>
<tr>
<td>IN11</td>
<td>Vacuum valve relay status3</td>
</tr>
</tbody>
</table>

zero=Normal, one =Stop
zero=Remote, one=Local
zero=not pushed, one= pushed
Zero=Alarm, one=Normal
Zero=Alarm, one=Normal
Zero=Alarm, one=Normal
TBD
TBD
TBD
TBD
TBD
4. Pulizzi Power control assignments

All Rack AC Power is routed through Pulizzi IPC3402 Ethernet controlled AC switches.

![Pulizzi Power Control Switches](image)

<table>
<thead>
<tr>
<th>Pulizzi AC control switch 0</th>
<th>Pulizzi AC control switch 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Location</td>
</tr>
<tr>
<td>RACK1</td>
<td>RACK1</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP Address</td>
</tr>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Output</td>
<td>Output</td>
</tr>
<tr>
<td>Function</td>
<td>Function</td>
</tr>
<tr>
<td>Outlet 1</td>
<td>Outlet 1</td>
</tr>
<tr>
<td>Phytron Rack mount motor drive 0</td>
<td>Acromag temperature monitor 0</td>
</tr>
<tr>
<td>Outlet 2</td>
<td>Outlet 2</td>
</tr>
<tr>
<td>Phytron Rack mount motor drive 1</td>
<td>Barcode scanner</td>
</tr>
<tr>
<td>Outlet 3</td>
<td>Outlet 3</td>
</tr>
<tr>
<td>Phytron Rack mount motor drive 2</td>
<td>E-STOP Power</td>
</tr>
<tr>
<td>Outlet 4</td>
<td>Outlet 4</td>
</tr>
<tr>
<td>Compact UMAC Motion control System</td>
<td>Spare</td>
</tr>
<tr>
<td>Outlet 5</td>
<td>Outlet 5</td>
</tr>
<tr>
<td>EDAS</td>
<td>Spare</td>
</tr>
<tr>
<td>Outlet 6</td>
<td>Outlet 6</td>
</tr>
<tr>
<td>Guider/Wavefront camera electronics 0</td>
<td>Spare</td>
</tr>
<tr>
<td>Outlet 7</td>
<td>Outlet 7</td>
</tr>
<tr>
<td>Brake +24VDC power</td>
<td>Spare</td>
</tr>
<tr>
<td>Outlet 8</td>
<td>Outlet 8</td>
</tr>
<tr>
<td>Ectron LVDT signal conditioner</td>
<td>Spare</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulizzi AC control switch 2</th>
<th>Pulizzi AC control switch 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Location</td>
</tr>
<tr>
<td>RACK2</td>
<td>RACK2</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP Address</td>
</tr>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Output</td>
<td>Output</td>
</tr>
<tr>
<td>Function</td>
<td>Function</td>
</tr>
<tr>
<td>Outlet 1</td>
<td>Outlet 1</td>
</tr>
<tr>
<td>Lakeshore Controller</td>
<td>Ethernet switch</td>
</tr>
<tr>
<td>Outlet 2</td>
<td>Outlet 2</td>
</tr>
<tr>
<td>Lakeshore Monitor 0</td>
<td>Acromag Temperature monitor 1</td>
</tr>
<tr>
<td>Outlet 3</td>
<td>Outlet 3</td>
</tr>
<tr>
<td>Lakeshore Monitor 1</td>
<td>scroll pump</td>
</tr>
<tr>
<td>Outlet 4</td>
<td>Outlet 4</td>
</tr>
<tr>
<td>Omega controllers (3).</td>
<td>EDAS</td>
</tr>
<tr>
<td>Outlet 5</td>
<td>Outlet 5</td>
</tr>
<tr>
<td>Pfeiffer gauge controller</td>
<td>spare</td>
</tr>
<tr>
<td>Outlet 6</td>
<td>Outlet 6</td>
</tr>
<tr>
<td>Guider/Wavefront camera electronics 1</td>
<td>spare</td>
</tr>
<tr>
<td>Outlet 7</td>
<td>Outlet 7</td>
</tr>
<tr>
<td>Varian vacuum valve control</td>
<td>spare</td>
</tr>
<tr>
<td>Outlet 8</td>
<td>Outlet 8</td>
</tr>
<tr>
<td>Science camera</td>
<td>spare</td>
</tr>
</tbody>
</table>
5. Temperature control and monitoring

<table>
<thead>
<tr>
<th>Input</th>
<th>Sensor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel 1</td>
<td>T1</td>
<td>Wheel enclosure: attached to the outer surface</td>
</tr>
<tr>
<td>channel 2</td>
<td>T2</td>
<td>Dewar: on side opposite bulkhead and facing wheels</td>
</tr>
<tr>
<td>channel 3</td>
<td>T3</td>
<td>Lens 3: attached to the lens mount, furthest from dewar</td>
</tr>
<tr>
<td>channel 4</td>
<td>T4</td>
<td>Vee block 1: attached to the inside of radiation shield at top, center</td>
</tr>
<tr>
<td>channel 5</td>
<td>T5</td>
<td>Detector mount: opposite the detector and near top</td>
</tr>
<tr>
<td>channel 6</td>
<td>T6</td>
<td>Detector mount: on detector header board</td>
</tr>
<tr>
<td>channel 7</td>
<td>T7</td>
<td>Dewar back: middle of side opposite bulkhead plate, near optical bench</td>
</tr>
<tr>
<td>channel 8</td>
<td>T8</td>
<td>Radiation shield: halfway along length and opposite the dewar</td>
</tr>
</tbody>
</table>

Engineering sensors will be allocated to the second lakeshore monitor. An external selection switch will support multiple inputs to the controller in the test and integration phase.

<table>
<thead>
<tr>
<th>Input</th>
<th>Sensor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel 1</td>
<td>E1</td>
<td>Lens 2: Attached to the lens mount material or..</td>
</tr>
<tr>
<td>channel 2</td>
<td>E10</td>
<td>Vee block 2: Attached to the inside of the radiation shield at top, center</td>
</tr>
<tr>
<td>channel 3</td>
<td>E11</td>
<td>Dewar front: Middle of side facing bulkhead plate, near optical bench</td>
</tr>
<tr>
<td>channel 4</td>
<td>E12</td>
<td>Lens 9 dummy: Center of a dummy lens in the mount for lens 9</td>
</tr>
<tr>
<td>channel 5</td>
<td>E13</td>
<td>Lens 10 dummy: Center of a dummy lens in the mount for lens 9</td>
</tr>
<tr>
<td>channel 6</td>
<td>E14</td>
<td>Detector dummy: Center of the ZIF socket</td>
</tr>
<tr>
<td>channel 7</td>
<td>E15</td>
<td>Electronics radiation shield Center of radiation shield behind detector</td>
</tr>
<tr>
<td>channel 8</td>
<td>E16</td>
<td>Wheel radiation shield Top of radiation shield over filter/grism wheels</td>
</tr>
</tbody>
</table>
Science Detector Thermal control

<table>
<thead>
<tr>
<th>Lakeshore Model 321 Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>Relay</td>
</tr>
</tbody>
</table>
Three Omega model CNi16D54-EI PID controllers will be used for warm-up and cool-down of the instrument. Controller 0 will be used for warm-up of the MOS section for slit mask changes. It will be programmed to warm up as quickly as possible. Controller 1 will be used to warm-up the camera section. It will be programmed to raise the temperature at a nominal rate 0.2°C/minute. Controller 2 will be used to cool the camera section. The output will drive a solid state relay which drives a cryogenic solenoid valve that controls the flow of LN2. The rate of change will be maintained at a nominal 0.2 C/minute.

<table>
<thead>
<tr>
<th>Omega Controller 0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>TBD</td>
</tr>
<tr>
<td>Rack 2 Switch Port</td>
<td>0</td>
</tr>
<tr>
<td>Output</td>
<td>MOS Heater control</td>
</tr>
<tr>
<td>Input</td>
<td>K type TC in MOS Chamber</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Omega Controller 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>TBD</td>
</tr>
<tr>
<td>Rack 2 Switch Port</td>
<td>1</td>
</tr>
<tr>
<td>Output</td>
<td>Camera Heater Control</td>
</tr>
<tr>
<td>Input</td>
<td>TC or RTD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Omega Controller 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>TBD</td>
</tr>
<tr>
<td>Rack 2 Switch Port</td>
<td>2</td>
</tr>
<tr>
<td>Output</td>
<td>LN2 Fill control</td>
</tr>
<tr>
<td>Input</td>
<td>K type TC</td>
</tr>
</tbody>
</table>
Acromag Thermocouple Rack housekeeping temperature monitors

The Acromag units will be used to monitor rack temperatures. They will primarily be used during the initial testing of the rack cooling system, but during normal operation will provide a status to warn of an impending rack shutdown by the AC line in cutoff thermostat. For convenience each rack will have a standard mini K type thermocouple connector panel jack that will be read out at channel 6.

<table>
<thead>
<tr>
<th>Acromag Monitor0 Rack 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
</tr>
<tr>
<td>Rack 1 Switch Port</td>
</tr>
<tr>
<td>Channel1</td>
</tr>
<tr>
<td>Channel2</td>
</tr>
<tr>
<td>Channel3</td>
</tr>
<tr>
<td>Channel4</td>
</tr>
<tr>
<td>Channel5</td>
</tr>
<tr>
<td>Channel6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acromag Monitor0 Rack 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
</tr>
<tr>
<td>Rack 2 Switch Port</td>
</tr>
<tr>
<td>Channel1</td>
</tr>
<tr>
<td>Channel2</td>
</tr>
<tr>
<td>Channel3</td>
</tr>
<tr>
<td>Channel4</td>
</tr>
<tr>
<td>Channel5</td>
</tr>
<tr>
<td>Channel6</td>
</tr>
</tbody>
</table>
Phytron TCs

Phytron TCs are read back via EDAS0 RS-232 ports 0-2 in rack0. Refer to the Phytron serial protocol document and Phytron PAB manual for details. These detectors will be used primarily in the initial testing phase of the instrument. During normal operation, they will be monitored to check for motor overheating.

<table>
<thead>
<tr>
<th>Phytron Drive TC Channels (all K type TC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>phytron0_ch1</td>
</tr>
<tr>
<td>phytron0_ch1</td>
</tr>
<tr>
<td>phytron0_ch2</td>
</tr>
<tr>
<td>phytron0_ch3</td>
</tr>
<tr>
<td>phytron0_ch4</td>
</tr>
<tr>
<td>phytron0_ch5</td>
</tr>
<tr>
<td>phytron1_ch0</td>
</tr>
<tr>
<td>phytron1_ch1</td>
</tr>
</tbody>
</table>
6. Ethernet connected devices

All Ethernet connections are made via a Ruggedcom RSG2100 Industrial managed Ethernet switch. The switch is of a modular design to accommodate a variety of physical network interface layers.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>IP Address</th>
<th>Switch Connected to</th>
</tr>
</thead>
<tbody>
<tr>
<td>cPCI system</td>
<td>TBD</td>
<td>Rack 1 Switch Port 0</td>
</tr>
<tr>
<td>EDAS0 Rack 1</td>
<td>TBD</td>
<td>Rack 1 Switch Port 1</td>
</tr>
<tr>
<td>EDAS1 Rack 1</td>
<td>TBD</td>
<td>Rack 1 Switch Port 2</td>
</tr>
<tr>
<td>Rack2 Ethernet switch</td>
<td>TBD</td>
<td>Rack 1 Switch Port 3</td>
</tr>
<tr>
<td>Pulizzi0 Rack 1</td>
<td>TBD</td>
<td>Rack 1 Switch Port 4</td>
</tr>
<tr>
<td>Pulizzi1 Rack 1</td>
<td>TBD</td>
<td>Rack 1 Switch Port 5</td>
</tr>
<tr>
<td>Acromag Monitor0 Rack 1</td>
<td>TBD</td>
<td>Rack 1 Switch Port 6</td>
</tr>
<tr>
<td>Spare</td>
<td>TBD</td>
<td>Rack 1 Switch Port 7</td>
</tr>
<tr>
<td>Spare</td>
<td>TBD</td>
<td>Rack 1 Switch Port 8</td>
</tr>
<tr>
<td>Spare</td>
<td>TBD</td>
<td>Rack 1 Switch Port 9</td>
</tr>
<tr>
<td>Spare</td>
<td>TBD</td>
<td>Rack 1 Switch Port 10</td>
</tr>
<tr>
<td>EDAS2 Rack 2</td>
<td>TBD</td>
<td>Rack 2 Switch Port 0</td>
</tr>
<tr>
<td>EDAS3 Rack 2</td>
<td>TBD</td>
<td>Rack 2 Switch Port 1</td>
</tr>
<tr>
<td>Pulizzi1 Rack 2</td>
<td>TBD</td>
<td>Rack 2 Switch Port 2</td>
</tr>
<tr>
<td>Pulizzi2 Rack 2</td>
<td>TBD</td>
<td>Rack 2 Switch Port 3</td>
</tr>
<tr>
<td>Acromag Monitor0 Rack 2</td>
<td>TBD</td>
<td>Rack 2 Switch Port 4</td>
</tr>
<tr>
<td>Omega0</td>
<td>TBD</td>
<td>Rack 2 Switch Port 5</td>
</tr>
<tr>
<td>Omega1</td>
<td>TBD</td>
<td>Rack 2 Switch Port 6</td>
</tr>
<tr>
<td>Omega2</td>
<td>TBD</td>
<td>Rack 2 Switch Port 7</td>
</tr>
<tr>
<td>Spare</td>
<td>TBD</td>
<td>Rack 2 Switch Port 8</td>
</tr>
<tr>
<td>Spare</td>
<td>TBD</td>
<td>Rack 2 Switch Port 9</td>
</tr>
<tr>
<td>Spare</td>
<td>TBD</td>
<td>Rack 2 Switch Port 10</td>
</tr>
<tr>
<td>Spare</td>
<td>TBD</td>
<td>Rack 2 Switch Port 11</td>
</tr>
</tbody>
</table>
7 Vacuum pump control

Varian Turbo-V301 pump controller

Varian Vacuum control

MMIRS vacuum pumping is provided by a combination of a roughing pump and a turbo pump. The roughing pump is controlled by pushing a button of the Pulizzi power controller, and the turbo pump is controlled by a rack mounted Varian turbo-pump controller, which is also connected to a Pulizzi channel. The steps to achieve pumping are as follows:

1. Power up the Varian V600 Scroll pump by pressing the Pulizzi button that controls it. The Scroll pump will immediately run.
2. Power up the turbo pump controller by pressing the Pulizzi button that controls it.
3. Enable and run the Varian navigator 310 Turbo pump Turbo pump via the controller’s RS-232 interface is connected to an EDAS RS-232 to Ethernet converter, to support remote operation.
8. Vacuum gauge Control

Pfeiffer Gauges
MMIRS utilizes three Pfeiffer vacuum gauges all controlled by a rack mounted controller. Rough pressure is measured by a PPT100 gauge, and each chamber is monitored by an HPT 100 sensor. The controller’s RS-232 interface is connected to an EDAS RS-232 to Ethernet converter.

9. E-stop
The emergency stop function is selected by pressing a mushroom push button located on the front panel. Once the button is pressed it will lock in place, and must be turned to be un-latched. When in the latched state, all motion will stop, and all motion commands will be disabled. The switch closure directly disables the drives and also toggles a status bit that can be read by the Delta-Tau motion controller. Turning and unlatching the button re-enables motion.

10. Wheel advance control
Control of the wheel advance is provided by front panel switches and buttons and runs independent of the host system. The Slit Mask Advance is used to select between manual control and computer operation. Manual control mode is defined as having all axis movement disabled, except for on demand wheel advance. Computer control mode is the normal operating mode.
11. Scanner

The barcode scanner used in MMIRS is an OMRON V520-LGP6125 handheld CCD scanner with an RS-232 interface. The scanner connects to a panel mounted connector on Rack 1. The scanner is used to read barcodes when installing slit masks. When installing slit masks the system will query the scanner to store the mask ID associated with the MOS wheel position set by the user in “manual advance mode”.
12. Grounding Plan

Rack 1 provides the instrument its ground reference return and termination for safety grounds. The grounding plan assures that no current is flowing through enclosures and that common mode noise is minimized. In addition, the effects of EMI and electrostatic discharge are also minimized. The science detector maintains a separate ground reference to keep noise to a minimum. A high impedance path of 10 megohms from this isolated ground will be installed to protect against damage to the detector due to ESD. The MMIRS Cryostat and racks are not isolated from the telescope, but the science detector front end is.
13. MMIRS Interlock Methodology

General:

The motion control signals for the MMIRS mechanisms should, in general, route to the interface printed wiring board (I/F PWB) and through a high pin count Complex Programmable Logic Device (CPLD) with appropriate opto-isolation and buffering logic. Signals applicable to interlocks (e.g. pressure ALARMS, temperature ALARMS, Emergency Stop etc.) would also route to the I/F PWB, through this logic. The purpose of the CPLD is primarily to implement any presently defined and future required interlock logic for the motion control mechanisms of the instrument. Use of a CPLD for this application allows for future additions to, or modifications of, the interlock scheme through the In-Circuit-Programming capability of modern devices. In addition to the interlock function, the CPLD allows for re-routing of signals and changes of signal polarity, should the need arise, without changing the printed wiring board. Routing all of the PMAC control and mechanism feedback signals through the I/F PWB also allows for a central location of all test points for troubleshooting. The JTAG programming/diagnostic port on the CPLD is also available for reading all signals passing in and out of the CPLD. This allows for a powerful secondary diagnostic tool independent of the PMAC or computer systems.

Implementation:

The interlock rules defined by “MMIRS Valve and Heater Interlock Conditions”, McLeod, Martini (Reference. 1) is presented in block diagram form in Figure 1. ALARM relay outputs of the Pfeiffer Gauge control and Lakeshore temperature control units are brought to the I/F PWB and are set for the conditions set out in Ref. 1. (Table 1 defines the relays used in Figure 1.) These signals are opto-isolated, and brought to an Altera CPLD (e.g. ACEX 1K family) along with the mechanism drive commands and feedback (Amp Enable, STEP, and DIRection from the PMAC ACC24C2A board. Mechanism LIMIT feedback signals and system Emergency Stop are similarly isolated and brought to the CPLD. Implementation of the interlock scheme defined in Ref. 1 is a matter of generating an Altera format source file, including pin definitions and Boolean equations, and compiling to the target device. The resulting object file can then be uploaded to the CPLD, in circuit, via the JTAG programming/diagnostic connector. The interlock conditions defined in Ref. 1 are simple Boolean logic equations involving camera and MOS temperature and pressure values. More complex interlocks, involving multiple axes are possible, and easily implemented, if required. Qualified Amp Enable signals are buffered and sent back to PMAC I/O as well as buffered versions of ALARM signals.
Figure 1.
MMIRS Interlock Scheme

Page 23 of 34
Interlock Relay Summary and Description.

Contacts closed when differential pressure between Camera and MOS sections is less than 10Torr.

K2 – Alarm relays internal to Pfeiffer DPG109 Gauge Control. N.O. contacts. 1, 2.
a. Contacts closed when MOS pressure is less than p1.
b. Contacts closed when MOS pressure is less than p1+10Torr.

K3 – Alarm relays internal to Pfeiffer DPG109 Gauge Control. N.O. contacts. 1, 2.
a. Contacts closed when CAMERA pressure is less than p1.
b. Contacts closed when CAMERA pressure is less than p1+10Torr.

K4 – Lakeshore relay associated with $T_{\text{CAMERA ALARM}}$. N.O. contacts. 1, 2.
Contacts closed when $T_{\text{CAMERA}} < 0\,^\circ\text{C}$.

K5 – Lakeshore relay associated with $T_{\text{MOS ALARM}}$. N.O. contacts. 1, 2.
Contacts close when $T_{\text{MOS}} < 0\,^\circ\text{C}$.

K6 – Lakeshore relay associated with $T_{\text{CAMERA ALARM}}$. N.O. contacts. 1, 2.
Contacts close when $T_{\text{CAMERA}} > 0\,^\circ\text{C}$.

K7 – Lakeshore relay associated with $T_{\text{MOS ALARM}}$. N.O. contacts. 1, 2.
Contacts close when $T_{\text{MOS}} > 0\,^\circ\text{C}$.

K8 – DIN rail mounted relay. N.O. contacts. 1, 3.
Used to gate Pulizzi switched AC power to MOS heater solid state relay
Contacts close when Gate Valve, V1, is in LIMIT, closed.

Used to gate Pulizzi switched AC power to CAMERA heater solid state relay
Contacts close when Gate Valve, V1, is in LIMIT, closed.

Used to gate Pulizzi switched AC power to operator switch (SW1) for Backfill/Pumping Valve (V2) control.
Contacts close when Gate Valve, V1, is in LIMIT, opened AND $T_{\text{MOS}} > 0\,^\circ\text{C}$ AND $T_{\text{CAM}} > 0\,^\circ\text{C}$. OR
Contacts close when Gate Valve, V1, is in LIMIT, closed AND $T_{\text{MOS}} > 0\,^\circ\text{C}$

Notes:
1. Relay contacts chosen to provide safe condition in the event of Disconnect.
2. Pfeiffer relay outputs only configurable to switch when pressure is less than set point.
3. K8 and K9 could be replaced with a single, 2-pole relay to provide gated MOS/CAMERA heater AC.
14. Overall Signal flow example

The following pages show an example of the signal flow and cabling for the MOS section motion axes. The first diagram is an overall view of the connections and the functional elements used. The following pages are the cable drawings that provide the connections for the MOS section from the inside of Rack 1 through to the motors and switches in the MOS chamber. All MMIRS electrical design is done in this manner, with changes made at the top level (the first diagram) flowing to the interconnect drawings automatically.
MOS Motor Thermocouple cable-chamber to Rack1

1. C134:SH2
2. C134:SH1

To Shroud

SHC 90° and 45° bend with 0.050 radius

SMITHSONIAN ASTROPHYSICAL OBSERVATORY
CENTRAL ENGINEERING
CAMBRIDGE, MA

MMIRS Electrical

To Shroud
100 Electronic Enclosure Design
The are two electronics enclosures which house all of the control electronics for the system. For a complete list of the components in each rack see Electrical Section VIII. The enclosures are designed to allow for easy access to all of the components for setup and removal. The enclosures are also required to limit the heat dissipation into the atmosphere while keeping the electronics below their maximum operating temperature. The sections following discuss the mechanical and thermal design of the enclosures.

110 Enclosure Mechanical Design
The enclosure is based on a standard 19 inch rack mount design. The frame is assembled from a heavy-duty aluminum structural framing system of modular extruded tubing manufactured by AMCO Engineering. The frame measures 24” wide x 51” tall x 25” deep.

There are two doors on the enclosure, one in the front and one in the rear. The rear door provides access to the cabling and any rear mounted components. The doors close and seal against a gasket using a multipoint latch.

The top, bottom and side panels are made of aluminum backed foamed polyurethane insulation sheets.

The back side of the enclosure contains panels for all of the electrical connections to the enclosure.

120 Enclosure Thermal Design
S-MMIRS-200, Section 650 states the enclosure shall contain an internal cooling system that limits its heat dissipation into the ambient environment. A maximum of 50 Watts heat dissipation for the entire instrument was given in the specification. Since each Guider/WFS was budgeted 10 Watts, the budget for each enclosure was determined to be 15 Watts. See the table below for the MMIRS heat dissipation budget.

<table>
<thead>
<tr>
<th>Component</th>
<th>Heat Dissipation Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guider WFS</td>
<td>10 Watts (ea)</td>
</tr>
<tr>
<td>Electronics Enclosure</td>
<td>15 Watts (ea)</td>
</tr>
<tr>
<td>Total Heat Dissipation</td>
<td>50 Watts</td>
</tr>
</tbody>
</table>

To control the heat dissipation for the enclosures a liquid-to-air heat exchanger was selected. Since MMT and Magellan facility coolant supplies are different (methanol/water at MMT and ethylene glycol/water at Magellan) a separate, removable heat exchanger is needed for each site. The heat exchanger will be mounted such that it can be removed without removing or
disconnecting other components. Also, other components can be removed without removing or disconnecting the heat exchanger.

![Electronics Enclosure Diagram](image)

Figure 1 - Electronics Enclosure

121 Heat Exchanger Design

The goal is to cool cabinet air circulated in a closed loop using a liquid-to-air heat exchanger with incoming liquid @ 24.7°C (76.5°F). Maximum allowable temperature inside the cabinet was set at 35°C which is 5°C below the maximum operating temperature of the most sensitive component. A conservative estimate of the maximum heat load for an enclosure is 800 Watts. Below is an example of thermal model of the ethylene glycol/water-to-air heat exchanger:

Application Inputs
- Heat load: 800 Watts
- Max desired air temperature (entering the HX): 35°C Max (95°F)
- Coolant: 10% EG / 90% water (Copper tubes OK)
- Coolant flow: 2 GPM
Coolant temperature (entering the HX): 24.7°C
800 watts / 35.0°C (air entering HX) - 24.7°C (water entering HX) = 77.7 Watts / deg C

Thermal Model

Heat Exchanger: (1) Theratron Model 723 / Parallel circuit, with (2) Comair-Rotron Patriot Fans
Coolant flow: 2.0 GPM @ 3 PSIG
Coolant temperature (entering HX): 24.7°C
Coolant temperature (exiting HX): 26.3°C
Air flow: 360 ACFM @ 0.25" w.c. (pressure not corrected for density)
Air temperature (entering HX): 33.5°C <35°C = Good
Air temperature (exiting HX): 27.9°C
Heat Load Dissipated: 800 Watts

The heat exchangers in both enclosures will be tied to the same facilities input line through a “tee”. The same is true for the return lines.

The heat exchangers for the glycol/water coolant will use coated copper tubing that is compatible with the coolant. The methanol/water heat exchangers will use stainless steel tubing because copper is not corrosively compatible with methanol.

In order to get proper air circulation inside the enclosure baffling may be required and adequate space has been allotted to add it if necessary.

122 Insulation Panels

The doors and panels on all sides will be insulated with a rigid, closed cell polyisocyanurate foam. The foam will be sandwiched between two thin aluminum sheets to form the panel. When mounted the panels will compress a thin gasket to provide an adequate seal. The foam has a superior (Class 1) flammability building code classification as tested by Underwriters Laboratory and Factory Mutual.

130 Enclosure Mouting to Telescope

The two electronics enclosures are attached to the telescope mounting truss and ride along with the instrument. Four pads located on the underside of the telescope mounting truss provide anchor points for the electronics enclosures’ own truss. The electronics enclosures’ truss consists of one inch aluminum tubes with a 0.120 inch wall thickness. Each end of the tube is threaded to accept a clevis. A clevis on one end of the tube is pinned to the anchor point on the telescope mounting truss. The clevis on the other end is pinned to a anchor bracket on the enclosure frame. Each tube and clevis assembly forms a turnbuckle that can be adjusted for length and then locked using jam nuts.
Figure 2 - Electronics Enclosures Mounted to Telescope
Figure 3 - Enclosure Anchor Point View
MMIRS
Electronics Rack Thermal Design Study

Introduction
The MMIRS Instrument requires two rack-mountable enclosures to house all of its electronics. It has been decided that the racks will be cooled using air-to-liquid heat exchangers. This design study documents the assumptions and calculations used in the thermal design for the enclosures.

There are two objectives for this design study:

Determine the size of the heat exchanger required to keep the maximum air temperature in the rack below the maximum temperature of the most temperature sensitive component in the rack.
Determine the insulation type and thickness that will ensure that the rate of heat transfer to the outside environment is less than the budgeted amount for the rack.

Requirements
- Maximum internal enclosure temperature is less than or equal to 35 deg C
- Heat dissipation is less than or equal to 30 watts total for both racks

Assumptions
- Steady state
- One-dimensional heat conduction (ignore corner effects)
- Conservative estimate of heat load = 800 Watts

Insulation Calculations

Rack Dimensions
\[h := 1300\text{-mm} \quad w := 600\text{-mm} \quad d := 600\text{-mm} \]
\[A_{\text{surf}} := 2 \cdot h \cdot w + 2 \cdot h \cdot d + 2 \cdot d \cdot w \]
\[A_{\text{surf}} = 41.333 \text{ ft}^2 \]
\[L_a := 1\text{-mm} \]

Material Properties
\[k_a := 64 \frac{\text{watt}}{\text{m-K}} \] Thermal conductivity of stainless steel @ 300K
\[k_b := 0.0206 \frac{\text{watt}}{\text{m-K}} \] Thermal conductivity of insulation (polyurethane foam) @ 300K

Steady State Conditions
\[T_{\text{amb}} := 299.85\text{-K} \] Maximum ambient air temperature
\[T_i := 304.8\text{-K} \] Average Air Temperature in rack
\[Q := 15\text{-watt} \] Allowable heat dissipation into the environment per rack
\[\Delta T := T_i - T_{\text{amb}} \quad \Delta T = 4.95\text{ K} \]
Based on the heat exchanger capacity calculated above, the heat exchanger vendor Thermatron, sized heat exchangers for both applications using the following properties:

Air Properties (0.728 Bar / 35C)
1. Density = 0.0518 Lb/ft³
2. CPT = 0.2405 Btu/Lb.F
3. KT = 0.0155 Btu/(H.ft².F/ft)
4. MUT = 0.0457 Lb/ft.H

10% EGW Properties (Avg 30C)
1. Density = 62.9 Lb/ft³
2. CPT = 0.946 Btu/Lb.F
3. KT = 0.333 Btu/(H.ft².F/ft)
4. MUT = 2.56 Lb/ft.H

60% Methanol / 40% Water Mix (by volume) Properties (30C)
1. Density = 55.26 Lb/ft³
2. CPT = 0.7405 Btu/Lb.F
3. KT = 0.1747 Btu/(H.ft².F/ft)
4. MUT = 2.543 Lb/ft.H

Heat Exchanger Sizing

MMIRS will travel to two different locations (Magellan and MMT) which have different liquid coolant provisions, two different heat exchangers are required.

Heat Exchanger Required Capacity

\[Q_{load} := 800 \text{-watt} \]

Conservative estimate of heat load in one rack

\[T_{air_in} := 308.15 \text{K} \]

Maximum temperature of air entering heat exchanger

\[T_{coolant_in} := 297.85 \text{K} \]

Maximum temperature of coolant entering heat exchanger (~ 2 degrees below ambient)

\[\text{HEX}_{capacity} := \frac{Q_{load}}{T_{air_in} - T_{coolant_in}} \]

Capacity of heat exchanger required to dissipate the heat load.

Based on the heat exchanger capacity calculated above, the heat exchanger vendor Thermatron, sized heat exchangers for both applications using the following properties:

Solve for Insulation Thickness

\[R_a := \frac{L_a}{k_a \cdot A_{surf}} \]

\[R_a = 4.069 \times 10^{-6} \frac{\text{K}}{\text{watt}} \]

Since the thermal resistance, Ra, of metal panel is extremely small it will be ignored

\[L_b := \frac{k_b \cdot A_{surf} \cdot \Delta T}{Q} \]

\[L_b = 1.028 \text{ in} \quad L_b = 26.104 \text{ mm} \]

Thickness of insulation panels
Thermotron’s thermal model and calculated heat dissipated by the heat exchanger are listed below.

10% EGW Heat Exchanger Model
Heat Exchanger: (1) Model 723 / Parallel circuit, with (2) Comair-Rotron Patriot Fans
Coolant flow: 2.0 GPM @ 3 PSIG
Coolant temperature (entering HX): 24.7C
Coolant temperature (exiting HX): 26.3C
Air flow: 360 ACFM @ 0.25” w.c. (pressure not corrected for density)
Air temperature (entering HX): 33.5C <35C = Good
Air temperature (exiting HX): 27.9C
Heat Load: 800 Watts

60% Methanol / 40% Water Mix (by volume) Heat Exchanger Model
Heat Exchanger: (1) Model 733SBP2A02 / Parallel circuit, with (2) Comair-Rotron Patriot Fans
Coolant flow: 2.0 GPM @ 3 PSIG
Coolant temperature (entering HX): 24.7C
Coolant temperature (exiting HX): 27.1C
Air flow: 360 ACFM @ 0.25” w.c. (pressure not corrected for density)
Air temperature (entering HX): 34.5C <35C = Good
Air temperature (exiting HX): 28.8C
Heat Load: 800 Watts

Even though the heat load is a conservative estimate, the heat exchangers above provide no safety factor. The application will be reviewed to determine if the heat load can be reduced and/or if a larger heat exchanger should be selected. An attempt will be made to measure the load for various electronics modules to further refine the model. Other possibilities include increasing the coolant flow rates and/or use two smaller heat exchangers per rack that will provide enough safety margin above the heat load.
Section IX.

MMIRS Software Design

1. Overview
2. Derived Requirements
3. Design Principles
4. Computer and Software Architecture

Software Components
5. Libraries and Utilities
6. Servers
7. Graphical User Interfaces, GUIs

8. System Management
9. Testing and Verification
10. Data Products
11. Schedule and Milestones
CDR Software Section

1. Overview

2. Derived Requirements

3. Design Principles

4. Computer and Software Architecture
 - Hardware and Network
 - MMIRS-Computer-Arch.pdf
 - Software Overview
 - Software Interconnect Diagram.pdf

5. Software Components

6. Libraries and Utilities

7. Servers

8. System Management

9. Testing and Verification

10. Data Products
 - FITS Image Header Example.pdf
 - FITS MOS Header Example.pdf
 - Aperture Map Example.pdf
 - Data Reduction Software

11. Schedule and Milestones
 - Development Estimates
 - Release Schedule
Overview

SAO has been operating instruments at the 6.5m MMT for 5 years, starting with the Minicam imager at f/9 in 2000. In total we have now commissioned 5 instruments for operations at the MMT: 2 optical imagers (Minicam and Megacam), 2 fiber multi-object spectrographs (Hectospec and Hectochelle) and 1 infra-red imager (SWIRC), as well as a Shack-Hartmann wavefront sensor and the f/5 refractive corrector. As a result we have mature instrument control systems, a common observing environment, and a robust computer system to support multi-instrument observing.

The MMIRS instrument will use familiar instrument control systems to drive motors in the cryostat. The MMIRS science camera electronics are identical to SWIRC and the detector software is complete. The thermal-vacuum control systems are new, but largely decoupled from the instrument control and observing systems. The thermal-vacuum control systems require relatively simple computer support, as the bulk of the intelligence for controlling the systems resides in the hardware controllers, e.g. Omega and Lakeshore. The observing GUI will be largely identical to the Megacam and Hecto GUIs, with customizations as required to match up with the mechanisms in MMIRS.

The MMIRS instrument will also implement continuous wave-front sensing, which will be new to the MMT and will therefore require additional support from the facility. The MMIRS guiding system will be largely identical to the systems used with Megacam and Hectospec/chelle. Some additional software will be required to interface to the observatory wavefront sensing software and to interface to the guide camera X-Y stages.

We plan to operate MMIRS at the Magellan telescope as well, which will present a different environment and facility interface. However, we are currently in the process of preparing Megacam for operations at Magellan. This will require installation of our computer systems (identical to the MMT system) and writing a protocol translator to go between our instrument software and the observatory control system. We wrote a similar piece of code for the MMT several years ago. The completion of the Megacam installation at Magellan will require implementation of the majority of the telescope/facility interfaces required for MMIRS.

Derived Requirements

Most MMIRS formal requirements are for the hardware. But there are many unwritten expectations and constraints based on our existing framework and the environments in which we'll be operating. From these contraints we derive these additional requirements.

- Observing interfaces for MMIRS should be as similar as possible to other SAO intrument interfaces.

- Operating interfaces (guiding, wave-front sensing) for MMIRS should be as similar as possible to other instruments at the same facility. The guider GUI will be new to the Magellan facility but will be in common with the Megacam guider.

- System must support multiple operational modes
 - Software must have test and/or simulator modes to enable easy use in non-observing settings, e.g. lab devopment, engineering, trouble-shooting and calibration modes.
 - Must have a test environment at SAO for development and debugging

- System must run on multiple computer systems at multiple facilities
 - Operate on private network
 - Operate behind a firewall
 - Devices will have private ethernet addresses that are constant so the instrument can be transported between SAO, MMT, and Magellan without reprogramming any IP addresses.

- Minimize Failure Conditions that Require Opening Camera Section of Cryostat
 - Failure of motor limits must be recoverable (must have hard stops)

- Dependability, Reliability, Recoverability
 - Previous software versions must be retrievable
 - System must be backed up
 - System must be under configuration control
 - System must be baselined
 - Software must be tested before installation
- Must have on-site spares to enable repair in < 24 hours
 - redundant computers
 - spare camera data controllers
 - spare phytrons
 - spare uMAC

- Integrity

 - Science Data must never be lost:
 - 3 copies made of each exposure
 - RAID5 system1:
 - 1 user accessible copy
 - 1 archived un-accessible copy
 - RAID5 system2:
 - 1 user accessible copy on data analysis computer

- Development Efficiency

 - Minimize Development Hours
 - Code ReUse
 - Table Driven Configurations
 - Table Driven Software

 - Support Parallel Development
 Must support parallel lab development:
 - cryostat lab development
 - wfs/guide lab development
Design Principles

- Client/Server Architecture using MSG protocol communication
 - Loosely Coupled Components
 - Servers are controllable both from scripts as well as GUI buttons
 - All servers are accessible and runnable via telnet

- Protocol Translator Layers
 Isolate layers of code that contain the mappings necessary to operate in different environments
 - two different telescopes
 - telescope interface server
 - guideserver

- Maximize Code ReUse and Minimize Code Changes for Multiple Environments
 - Configuration Driven Services
 - Cal Lamps
 - Pulizzi Power Servers
 - EDAS converters
 - Lakeshore monitors and controllers
 - Omega heater controllers
 - Vacuum gauges
 - Table Driven Architecture (computer/server assignments)
 - Camera Parameters

- Incremental Development
 Implement a sparse operational framework as early as possible and continuously add functionality. Use existing code wherever possible. Make continuous incremental changes to gradually adapt and expand the system to full functionality. MMIRS system will integrate into the observing environments already in place at the MMT and Magellan, as well as the engineering environment at SAO.

- Multiple Interface Levels
 - Lab operations at SAO
 - Engineering operations at SAO and at telescopes
 - Calibration operations at SAO and the telescopes
 - Science observing operations at the telescopes
● Simulators
 We have simulators for many of the instrument and telescope components to allow end-to-end testing at SAO after delivery of the instruments.

● Standard File Formats/Header Keywords

 Our Science image FITS files use standard header keywords wherever possible. They conform to the keyword usage defined by NOAO and are common for all of our instruments.

 In addition to the science image frame, spectroscopic data requires an aperture map. This is stored as binary FITS table extension to the science image and also extracted into a plain ASCII Iraf-compatible list readable by IRAF APEXTRACT tasks.
Hardware and Network

- Power

The facility provides 120 V UPS quiet power which feeds our UPS device. All computer hardware is connected to the UPS. The UPS is specified to provide 30 minutes of backup, but is programmed to issue shutdown commands to the computers after a 5 minute outage, ensuring a safe and orderly shutdown of all systems in the event of power loss. This also facilitates shutdown for impending thunderstorms. Simply shutting off power to the UPS will initiate automatic shutdown of the computers 5 minutes later, thus simplifying the shutdown procedure for the observatory staff.

- Computer Architecture

The MMIRS computer system is built by networking identical Linux server rack-mount systems. Our configuration requires a minimum of 3 units at the MMT and a minimum of 4 units at Magellan. The systems are otherwise identical and spare each other with the possible necessity of swapping special purpose PCI camera interface cards. The 3U units are mounted in our own computer rack with all the supporting equipment: UPS, ethernet switches, fans.

Architecture Diagram

- Computer Hardware

Each computer component in the MMIRS system will run the Fedora Core 2 Linux operating system.

- Dual Opteron 2.2 GHz. CPUs
- 4 Gbytes memory
- Dual Head Graphics Cards
- 5 PCI Slots (for camera controllers) and other PCI computer devices
- 6 x 250 Mbyte ATA data disks, RAID 3
- 1 250 Mbyte ATA system disk
- 2 Gigabit ethernet ports
- 1 CDROM
- 1 USB port

- Network Configuration

The computers are all connected to our Gigabit ethernet switch. All the computers
have IP addresses in the private subnet range 192.168.1.1-256. One of the computers - Observer Workstation - also has an IP address in the public range and so is accessible from outside the telescope.

The 2 MMIRS instrument electronics racks will also be part of this private Gigabit ethernet and all ethernet devices in the racks will also be assigned IP addresses in the 192.168.1.1-256. This allows the hardware to move transparently between the 2 telescopes with no need to fiddle with IP addresses. Our network switches will connect to the facilities' Gigabit networks.
Software Overview

The MMIRS software can be partitioned into 5 distinct subsystems each with its own environment and external interfaces. Only the Planning/MOS-slit design sub-system, WFS sub-system and the Telescope Interface Server have direct interaction with the observatory facilities.

- **Engineering**
 An engineering GUI is provided to allow testing and control of all MMIRS instrument hardware: thermal-vac and Motion Control. This system is completely self-contained within the SAO/MMIRS environment.

- **Cryostat monitoring & control**
 The Cryostat system allows observers and observatory staff to control the heating and cooling of the MMIRS cryostat, and in particular to allow changing of MOS slitmasks. The interface must allow easy use by staff members while safe-guarding the instrument. This system is also completely self-contained within the SAO/MMIRS environment. This system interacts with the Thermal-Vac system which provides the interface to all of the cryostat thermal-vac devices.

- **Planning**
 The planning subsystem is primarily for use of MMIRS in the MOS mode. It allows the observer to plan an MOS observation and produce a slit-mask configuration file that is readable by the laser-cutting facility. This software must be accessible by users at their home institutions as well as at the observatories. The slit-mask configuration file must be usable at both the Magellan and MMT mask-cutting facility. This software will be taken from the existing system used by IMACS at Magellan, ensuring compatibility with the Magellan system. A translation layer will be added, if necessary for compatibility with the MMT facility.

- **Guiding & WaveFront Sensing**
 The guiding and wavefront sensing subsystem must be compatible both with the SAO observing environment as well as the two telescope systems. This system has the most design and interface constraints. The Telescope Interface Server provides a critical protocol translation layer between the SAO instruments and the telescope control systems. It allows both the observing and guide correction interfaces to be uniform at both telescopes. The GuideServer provides the common interface to different Guide Camera systems. The MMIRS guide camera control protocol will be integrated into this
existing application. And we will adopt Magellan’s GMAP guide star selection system for both observatories.

The Wave Front Sensing system will be provided by the Magellan facility. MMIRS must only supply a WFS definition file and the raw FITS images from the camera. The MMTO will need to add the capability to do continuous wavefront sensing to support MMIRS.

- Observing
 The observing interface will be a variation of the SPICE/MICE GUIs currently in use for the existing SAO instruments. They have only 2 external interfaces. The telescope interface will be handled through the telescope interface server. The Guide interface will be implemented within the Guide Server. With these 2 systems in place, the observing system is completely de-coupled from the observatory system.
Software Interconnect Diagram
The software is built using many common libraries and packages. These include SAO internal libraries developed for other instruments, external libraries from hardware vendors, external astronomy packages and utilities from the observatories where our instruments are deployed.

- SAO libraries and utilities
 - Inter-Process Communication: msg protocol The msg library (implemented in C and Tcl) is used by all client and server applications to establish the communication of commands and status variables.
 - Database and Configuration Tables: Starbase tables are used for all the tabular data in the system. This includes all the internal software configuration tables as well as the observer object catalogs and aperture maps. The format is a simple ASCII tab-delimited table. The support tools allow sophisticated database manipulations including some astronomy specific functions.
 - FITS file read/write/keywords The fitsy library (implemented in C and Tcl) provides a light-weight interface to read and write FITS files.
 - IRAF-style parameter interface SAO written tools use our param interface library which emulates the IRAF parameter interface familiar to most astronomers
 - Observers Database A database of each exposure is automatically generated by postprocessor code that builds a starbase table from selected header keywords from each exposure image. (This is the same database that's joined with observer comments to generate the observers logfile).
 - Archiving The archiving at the MMT is implemented with a script that queues files for transfer to SAO via the print queue mechanism. This is called as a postprocessor to each exposure.
 - Power control The powserv Tcl library is used to control all the Pulizzi devices and supports the multiple models/communication protocols.
 - Temperature Monitoring The lakeshore Tcl library developed for SWIRC controls the communication with the Lakeshore devices. It will be expanded to add control commands to the existing monitoring commands.
- **cmac communications** A Tcl library package developed to standardize PMAC motion control implementations.

- **Hardware Interface Libraries**
 - **Serial-to-ethernet communication** The EDAS library delivered from Intelligent Design and wrapped for Tcl is used to communicate with all the serial-port devices.
 - **Detector Electronics communication** The EDT library delivered from EEV and with a few local enhancements is used for all communication with the science camera electronics.

- **External Libraries and Utilities**
 - **Astronomical computations** `slalib` is used to perform all the astronomical computations.
 - **Image Display** DS9 is used for all our image display.
 - **IRAF** The NOAO/IRAF system is installed to support basic image analysis, such as focus, seeing measurements.

- **Observatory Compatibility Packages**
 - **SlitMask Generation**
 - **GMAP guide star selection software**
 - **Magellan telescope C interface library (Skip Schaller)**
SAO has developed a simple ASCII-over-tcp protocol to allow clients and servers to be written without significant effort on getting things to talk to each other.

This protocol is used for nearly all Inter Process Communication by the F5 instruments at the MMT.

The MMTI message passing protocol is an ASCII protocol based on TCP sockets. The protocol is described here.

- Newline terminated variable length ASCII message packet.
- Packet Format.

```
[#] command args \n
```

- Optional Packet Number.
- Command and Args.
- Terminator - A Newline character terminates the message.

- Message length. - The length of a message is not implicitly limited by the protocol. Currently the C implementation Messaging library limits messages to 512 characters.

- Commands - No commands are specifically defined in the protocol. The MMTI Messaging library defines the following:

```
set set a value
get get a value

ack positive acknowledge and return value.
blk positive acknowledge and data block.
nak negative acknowledge and return error.

sub subscribe to a value
uns unsubscribe to a value
```
This command set supports the publish/subscribe design pattern used in all servers. Servers then publish additional commands to support their specific functions.

- Inter Packet Data

Commands may define inter packet data. The sender and receiver of this data must each agree to write/read exactly the same number of bytes or define a logical EOF character.

There is no provision for protocol resynchronization if commands get confused sending or receiving interpacket data.

During the development of the F5 instruments for the MMT standard methods for sending interpacket data over msg sockets have been developed. FITS files are routinely sent as counted binary blocks using the fitsy library to read the correct number of bytes as indicated in the FITS headers. ASCII tables are read and written with the starbase routines that support the use of the form feed character as a logical end of file mark.

- Server access authentication - the msg library supports host based authentication via an enumerated list of allowed hosts.
Servers

All servers are implemented either in C or TcL using the msg protocol socket communication library. This ensures that all servers can be operated either from scripts or from GUls.

- **Telescope interface server**
- **Science Camera**
 - Detector
 - Instrument
 - Telescope
 - camera electronics commands
- **Guiding/Wave Front Sensing**
 - Guide server
 - WFS - Guider camera server
- **Motion Control Server**
 - PMAC Control Server
 - MOS wheel push buttons
- **Bar Code scanner server**
- **Thermal Vacuum**
 - Vac gauge server
 - Vac pump control server
 - Heater - Auto Fill control server
 - Camera - Mos section temperature monitor
 - Focal Plane Temperature Control
 - Phytron Stepper Amp server
- **Hardware Control**
 - Cal lamp server
 - Power Control Server
 - Rack monitor server
- **Log Server**
Telescope interface server

Overview

The telescope interface server provides a standard messaging protocol interface for our software to access telescope information and control telescope functions. It also provides a translation layer where the telescope model and coordinate systems expected by our system can be implemented on top of the model provided directly by the facility. The most important example of this concept is the use of instrument offset \((\text{instaz}, \text{instel})\) coordinate system used to define the dithering of all of our instruments, but not available at Magellan.

Derived From

This interface has already been written for the MMT telescope. An analogous server will be written in Tcl to interface to the Magellan telescope control system using Skip Schaller's C library interface. (This will be be required for Megacam at Magellan also).

The server in operation at the MMT is a fairly simple 1 to 1 command and value translator. At the Magellan telescope the control model is significantly simpler and less sophisticated. The telescope interface server for Magellan will have to emulate several features that are available at the MMT:

- Target RA, Dec independent of current pointing position
- Instrument Offsets
- Clearable Instrument Offset registers
- Clearable Guide Offset registers

Interface (Msg Protocol)

- Telescope Commands
 - `azeloff` azoffset eloffset
 Set the Az El offset from the base pointing direction
 - `azelrel` azoffset eloffset
 Add to the Az El offset from the base pointing direction.
 - `instoff` azoffset eloffset
 Set the instrument offset from the base pointing direction.
 - `instrel` azoffset eloffset
 Add to the instrument offset from the base pointing direction.
 - `radecoff` raoffset decoffset
 Set the Ra Dec offset from the base pointing direction.
o **radecrel** raoffset decoffset
 Add to the Ra Dec offset from the base pointing direction.

o **azelerr** azerror elerror roterror
 Add to the Az, El and Rotation error from the pointing direction. This is the
 command used to add guide corrections to the pointing direction.

o **slew** ra dec posangle
 Request a slew to a new position. To be confirmed by telescope operator.

- Status Variables (Published Variables)
 - Telescope pointing
 - Target position
 - ra including RA/Dec offsets and Inst offsets
 - dec including RA/Dec offsets and Inst offsets
 - pa position angle
 - epoch
 - ha
 - airmass
 - rot Current rotator angle
 - cat_id Object name from catalog
 - cat_ra RA from catalog
 - cat_dec Dec from catalog
 - cat_epoch Epoch from catalog

 - Telescope Offsets
 - raoff
 - decoff
 - elooff
 - azoff
 - instazoff
 - insteloff

 - Time and Date
 - dateobs
 - mjd
 - ut
 - lst

 - Tracking Status
 - strack Is the telescope tracking?
 - drives Are the drives on?
 - inpos Is the telescope in position?
- **Secondary Mirror Control**

- **Relative Offset Motions**
 - transxerr
 - transyerr
 - focuserr
 - tiltxerr
 - tiltyerr
 - thetazerr

- **Current Position Status variables**
 - transx
 - transy
 - focus
 - tiltx
 - tilty
 - thetaz
Science Camera

Overview

This server (written in C) provides all the functions necessary to configure a science camera and its supporting hardware (e.g. filter wheel, shutter), perform an exposure, read out the data and write a standard FITS data file with complete header keywords recording the telescope, instrument and detector readout information.

Derived From

The science camera server program consists of 4 servers bundled into a single executable. The 3 main servers: detector, instrument and telescope are taken directly from NOAO's ICE servers and can be run directly from an IRAF/ICE client interface. The only modification to the traditional ICE architecture is the writing of the final science data FITS file. This is written by the detector server rather than by the client.

We've added a "msg" protocol communication interface to the baseline ICE architecture to support Tcl/Tk clients that provide both status and control functions that allows the system to conform to our software architecture. Normal MMIRS observing will use the msg interface.

Current Status

The science camera software is largely complete. A new instrument server module will need to be configured for MMIRS to control the cryostat stages. The interface will be very similar to the existing SWIRC interface and Hecto interfaces. A new telescope interface will be added for the Magellan telescope to support both Megacam and MMIRS.
Detector

Overview

This module is part of the ICE camera server and provides all of the interaction with the science camera. It configures the camera electronics, programs the camera readout parameters and receives DMA science data from the camera. The data stream is descrambled and written to a single FITS image file. The sequencing of the exposure steps is controlled by the client (either IRAF/ICE or Tcl/Tk msg client).

Derived From

The existing ICE detector server has 2 cameras defined: detsao for all the CCD detectors and detir for the infra-red detectors. This module is complete and operational.

Interface

- Commands
 - detir_open
 - detir_close
 - detir_rparam
 - detir_wparam
 - detir_rinfo
 - detir_areaddata
 - detir_awaitdata
 - detir_maxbytes
 - detir_action <action code>

- Actions
 - AD_INIT (1)
 - AD_FLUSH (2)
 - AD_PREPARE (3)
 - AD_READ (4)
 - AD_READ (5)
 - AD_START_EXPO (6)
 - AD_PAUSE_EXPO (7)
 - AD_CONT_EXPO (8)
 - AD_STOP_EXPO (9)
- AD_IDLE (10)
- AD_WAIT_EXPO (11)
- AD_CHANGE_EXPO (12)
- AD_FCLOSE (100)

- Parameters (Published Variables)
 - dettype; / entry in cap file /
 - detfiletype; / detector output pixel type /
 - preflash; / preflash /
 - gain; / gain /
 - dwell; / sample integration time /
 - rdnoise; / read noise /
 - delay0; / no-op delay after each pixel /
 - delay1; / no-op delay after each row /
 - detpixtype; / detector pixel type /
 - exptime; / exposure time (milliseconds) /
 - caltime; / cal exp time (milliseconds) /
 - nscanrows; / number of scan rows /
 - imagetype; / type of frame /
 - colbin; / binning factor /
 - coltotal; / total visible /
 - colfirst; / start of data readout /
 - collast; / end of data readout /
 - colusct; / underscan total /
 - coluscw; / underscan width (binned) /
 - coluscm; / underscan margin /
 - colosct; / overscan total /
 - coloscw; / overscan width (binned) /
 - coloscm; / overscan margin /
 - rowbin; / binning factor /
 - rowtotal; / total visible /
 - rowfirst; / start of data readout /
 - rowlast; / end of data readout /
 - rowusct; / underscan total /
 - rowuscw; / underscan width (binned) /
 - rowuscm; / underscan margin /
 - rowosct; / overscan total /
 - rowoscw; / overscan width (binned) /
 - rowoscm; / overscan margin /
 - biasloc; / preferred biassec location /
 - datasecx1; / datasec start column /
 - datasecx2; / datasec end column /
 - datasecy1; / datasec start row /
- `datasecy2`; / datasec end row /
- `biassecx1`; / biassec start column /
- `biassecx2`; / biassec end column /
- `biassecy1`; / biassec start row /
- `biassecy2`; / biassec end row /
- `trimsecx1`; / trimsec start column /
- `trimsecx2`; / trimsec end column /
- `trimsecy1`;
- `trimsecy2`; / trimsec end row /
- `ccdsecx1`; / ccdsec start column /
- `ccdsecx2`; / ccdsec end column /
- `ccdsecy1`; / ccdsec start row /
- `ccdsecy2`; / ccdsec end row /
- `origsecx1`; / origsec start column /
- `origsecx2`; / origsec end column /
- `origsecy1`; / origsec start row /
- `origsecy2`; / origsec end row /
- `naxis1`; / naxis1 /
- `naxis2`; / naxis2 /
- `namps`; / number of pre-amps /
- `timeleft`; / timeleft /
- `camtemp`; / camera temperature /
- `dewtemp`; / dewar temperature /
- `rvshift`; / reverse vertical shift /
- `ashift`; / reverse ampreadout /
- `maxbyte`; / max dma xfer size /
- `maxbuff`; / max buf xfer size /
- `maxnrow`; / max buf xfer size (rows) /
- `chunksize`; / actual dmabuf xfer size /
- `rowsize`; / actual row size (bytes) /
- `nfexpo`; / number of focus exposures /
- `nrvshift`; / number of rows to shift /
- `elaptime`; / elapsed exposure time /
- `acttime`; / actual exposure time /
- `xpreskip`; / X preskip /
- `ypreskip`; / X preskip /
- `x underscan`; / X underscan /
- `xskip`; / X skip /
- `xdata`; / X data /
- `xpostskip`; / X postskip /
- `xoverscan`; / X overscan /
- `y preskip`; / Y preskip /
- `yunderscan`; / Y underscan /
- `yskip`; / Y skip /
- ydata; / Y data /
- ypostskip; / Y postskip /
- yoverscan; / Y overscan /
- headcode; / detector head code i.d. /
- longtime; / long exposure time /
- newtime; / new exposure time /
- scandir;
- outtype;
- seqno; / current seqno /
- detname / detector name /
- imagename / type of frame /
- objecttitle / object name /
- deterror / detector error string /
- micromc / object ucode - MMTI signal /
- microcs / compile string /
- microtk / ucode token - MMTI idle signal /
- microma / ucode macro - MMTI no idle signal /
- microsc / source ucode - MMTI serial freeze /
- microls / ucode list - MMTI serial unfreeze /

- header / header parameter block /
- filename / name of image file /
- configname / name of config file /
- shutconfig / name of shutconfig /
- ccdconfig / name of ccd program file /
- rotangle / telescope rotation angle /
- configroot / name of guide config root /
- ccdsigfile / name of ccd signale file /
- ccdpromprog / name of prom file /
- ccdgain / ccd gain setting /
- camgain / camera gain setting /
- rinfo / header card /
Overview

This module is part of the ICE camera server and acts primarily as a protocol translation layer between the client and the MMIRS cryostat to provide a uniform instrument interface. It translates the instrument configuration into commands to the uMAC motion server. It controls these stages in the cryostat:

- filter (instrfilter)
- decker (decker)
- grism (disperser)
- aperture (image, long-slit, slitmask-id)
- focus (instrfocus)

It also records the cryostat status and the complamp status in FITS cards for storage in the data file header.

Derived From

The existing ICE instrument server has 4 instruments defined: mini/megacam, hectospec, hectochelle and swirc. A new MMIRS module will be added that will borrow heavily from the existing modules.

Interface

- Commands

 - instrmmir_open
 - instrmmir_close
 - instrmmir_rparam
 - instrmmir_wparam
 - instrmmir_rinfo
 - instrmmir_action <action code>

 - AI_INIT (1)
 - AI_FOCUS (3)

- Parameters (Published Variables)
- instrtype entry in cap file
- instrname instrument name
- instrerror instrument error string
- instrfilters filter id
- aperture aperture
- disperser disperser
- decker decker
- tiltpos grating tilt position
- instrfocus instrument focus
- dispaxis dispersion axis
- fts filter database
- instrfocus instrument focus
- complamp comparison lamp
- rinfo header card

- Unused - allowed by ICE
 - callamp internal comparison lamp
 - probepos probe pos file
 - instrcoll instrument collimator focus
 - tvfilt tv filter
 - scanoffset offset from center (1/10 mic)
 - scanstep scan step (1/10 microns)
 - posangle position angle
Telescope

Overview

This module is part of the ICE camera server and provides a translation layer between the client and the different telescopes. It is used only for status (not commanding). It synchronises the telescope status variables and formats the FITS cards of telescope information for the science data file header.

Derived From

The module for interface to the MMT telescope is complete. The module for interface with the Magellan computer will be essentially identical and will be completed for Megacam.

Interface

- Commands
 - `telmag_open`
 - `telmag_close`
 - `telmag_rparam`
 - `telmag_wparam`
 - `telmag_rinfo`
 - `telmag_action <action code>`
 - `AT_INIT (1)`

- Parameters (Published Variables)
 - `telname telescope name`
 - `tazoff tel azimuth offset (arcsec)`
 - `teloff tel elevation offset (arcsec)`
 - `azoff inst azimuth offset (arcsec)`
 - `eloff inst elevation offset (arcsec)`
 - `telerror telescope error string`
 - `dateobs date of obs.`
 - `ut universal time`
 - `st sidereal time`
 - `jd Julian date`
 - `ra right ascension`
 - `dec declination`
- epoch epoch of ra & dec /
- ha hour angle /
- zd zenith distance /
- airmass airmass /
- telfocus telescope focus /
- telfdelta telescope focus delta /
- telfilters telescope filters /
- teltemp tel. temperature /
- windspeed wind speed /
- winddirection wind direction /
- humidity humidity /
- seeing seeing /
- rotangle rotation angle /
- pressure barometer /
- longitude longitude /
- latitude latitude /
- altitude altitude /
- pa parallactic angle /
- catid catalog id /
- catra catalog ra /
- catdec catalog dec /
- catrapm catalog ra proper motion /
- catdecpm catalog dec proper motion /
- catepoch catalog epoch /
- catcoord catalog coord /
- rinfo header card /
camera electronics commands

- **Overview**
 This server is implemented ONLY through the msg protocol and it handles commanding of the camera electronics which is unique to SAO controllers.

- **Derived From**
 This implementation is taken from the SAO CCD cameras and is used as is.

- **Interface**
 - **Commands**
 - `ccdsigtab` <starbase signal table>
 Download the signal table on the socket
 - `ccdsigbin` <file name of signal program binary>
 Download the binary signal file specified
 - `ccddownload`
 Download the binary file
 - `ccddownfile` <ccdprogram filename>
 Download the binary file specified
 - `ccdcmd` <4byte hexcode>
 Download the hex code specified
 - `ccdidle` <on,off>
 Activate/De-Activate the idle program
 - `ccdsfreeze` <on.off>
 Activate/De-Activate the serial freeze program
Guide server

Overview

The Guide server is a C program using the msg protocol library. It retrieves FITS images from the guide camera server, computes guide corrections and sends them to the telescope.

The current guide server moves its guide boxes by changing the subimage configuration in the guide camera. For MMIRS the guide server will move the guide cameras by sending a motion command to the Guider/WFS Motor Control server.

A configuration file describing the MMIRS guide cameras will have to be developed.

Derived From

This program is already in use at the MMT. It has been used with the Minicam camera at F5 and F9, and is currently used with Megacam, Hectospec and Hectochelle at F5. The program is extensivly configurable for various camera sizes, positions, rotation angles and pixel scales.

Commands

- start - start the guider.
- stop - stop the guider.
- tick - make one pass through the guide loop.
- guidelog - set the guide log output file name.
- tweakboxes - center a set of guide boxes on their guide stars.
- transfer - move one set of guide boxes to the same az/el relative positions around their guide star images as are measured in another set of guide boxes.
- ditherinst - move the guide boxes and telescope in instrument coordinates.
- ditherazel - move the guide boxes and telescope in azel coordinates.

Variables

The guide server has a few variables that control its operation.

- state - state of the guide loop: running (1) or stopped (0)
• send - should guide errors be sent to the telescope
• ngoodboxes - the number of guide boxes with acceptable SNR
• error - last error message for GUI

• ActiveBoxList - a list of guide box numbers to use in computing guide errors
• TransferBoxList - a list of guide boxes that were used to transfer guiding from one set of cameras to another.
• FullBin - full image binning
• BoxBin - guide box image binning
• BoxSize - guide box size in arcseconds
• ImageSize - guide image size in arcseconds
• Exposure - guide image exposure in seconds
• BackgroundWidth - width of area in pixels around the guide box to compute the background
• TelescopeDiameter - the diameter of the primary in meters.
• PrimaryFRatio -
• CassFRatio
• FocusUnits - units of the focus positioning.

• rot - last value of rotator received from the telescope

The guide server has many variables that control its configuration.

• GuiGeometry - preferred screen size and position for GUI
• FullImageList - a list full size star finder images.

• NumberOfCameras - the number of physical cameras in the system
 • CameraN_Name
 • CameraN_XSize
 • CameraN_YSize
 • CameraN_XPixelSize
 • CameraN_YPixelSize
 • CameraN_Binning
 • CameraN_Radius
 • CameraN_Rotation
 • CameraN_CamAngle
 • CameraN_Parity
 • CameraN_Defocus
 • CameraN_Bitpix

• NumberOfImages - the logical number of input images
• ImageN_Name
- ImageN_Camera
- ImageN_Exposure - exposure time for this image
- ImageN_Defocus
- ImageN_FullImage - Image number that this sub image is extracted from

These variables configure the source, placement and use of the image on the GUI

- ImageN_Grid - x, y position of the image in the GUI
- ImageN_GridWidth - size of the image
- ImageN_GridHeight
- ImageN_GridRotate - should the image to rotated such that +el is up?
- ImageN_GridRotation - static rotation offset for the image
- ImageN_GridZoom - initial zoom for the image
- ImageN_ImgSizePix
- ImageN_ShmKeys - shared memory key of FITS data
- ImageN_ShmSize - size of FITS data in memory
- ImageN_Config - updated when the image size is reconfigured
- ImageN_Update - updated when new data is available in shared memory

- NumberOfBoxes - the total number of guide boxes
- BoxN_Image - extract the box from image N
- BoxN_X - x pixel center of box
- BoxN_Y - y pixel center of box
- BoxN_SigmaXYThresh - maximum xy centroid error to allow guiding from a box
- BoxN_SigmaFWHMTThresh - maximum FWHM error to allow focus adjustment from a box

These values are computed and made available for display on the GUI

- BoxN_FWHM
- BoxN_CenX
- BoxN_CenY
- BoxN_CenAz
- BoxN_CenEl
- BoxN_Counts
- BoxN_Background
- BoxN_Noise
- BoxN_SigmaXY - estimated error in centroid
- BoxN_SigmaFWHM - estimated error in FWHM
- BoxN_BoxSizePix
- BoxN_Locked - box locked and used in guiding state
- **NumberOfErrors** - the number of errors to try to correct.

 This may have a value of 2, 3 or 4, using 4 will try to maintain telescope focus in addition to az, el and rotation.

- **Error_Name**
- **ErrorN_Gain** - proportional gain for this error
- **ErrorN_Offset** - fixed offset on error
- **ErrorN_Step** - maximum value of output error
- **ErrorN_Sample** - number of error samples to average before sending a correction.
- **ErrorN_LookB** - number of seconds of "lookback" to maintain on errors already sent.
The WFS/Guide camera server will be based on software obtained from Greg Burley.

The software provided by Burley is in the form of a callback library which is intended to be used with a GUI toolkit. We will use most of the library functions as callbacks from our server commands and stub out the calls in the camera functions which initiate updates of the user interface. Camera servers for the Hectospec and Megacam guiders that use this command set already exist.

WFS / Guide camera protocol commands:

- **imageconfig** n x y size bin

 Configure the guide camera image n imaging area to begin at pixel x, y and be a square pixel box of size pixels with on chip binning *bin*

- **set guide** onoff

 The camera is guideing and any shutter control server should take action to uncover the guide camera.

- **set FILENAME** filename

 A filename to save the guide images in. The default is guide0.fits and does not change between images.

- **expose** type exptime

 Take a guide exposure. Type may be "full" or "box". A full image is the full guide camera size and box is a subimage as specified in the imageconfig command.

- **get** ImageN

 Return a fits data block with FITS image data from ImageN
Motion Control Server

Overview

The motion control server is an instance of the PMAC Control Server, configured to manage motors within the MMIRS Cryostat and Guide/WFS system. Its control layout is dictated by configuration files, such as those detailed on the PMAC Control Server page. Its client and server sides are generated by the same program, and feature MMIRS-specific commands.

The motion control server is defined to control axes responsible for:

- Positioning the IR array in focus.
- Rotating the grism wheel.
- Rotating both filter wheels.
- Sliding the gate valve open and closed.
- Rotating the MOS and Dekker wheels.
- Positioning both guide cameras in x, y, focus, and WFS select stage.

Configuration of this server and data reporting are further detailed on the PMAC Control Server page. Briefly, the server references three files: one for the overall system layout, a second for generic motor settings, and a third for specific motor settings. Most useful running and configuration data generated by the PMAC is available through user interfaces to engineers and observers.

Derived From

- PMAC control systems
 All of the SAO instruments have used PMAC control servers, starting with the Megacam topbox shutters and filter wheel. A more sophisticated example is the fiber positioner system for Hectospec/chelle. The MMT F5 Wave Front Sensor motor axes were a second-generation development, implemented with the new framework allowing table definable axis definitions and parameters. The MMIRS PMAC development will also be built on this new framework.

- Instrument control systems
 The high level instrument commands are modeled directly from the instrument commands for Megacam topbox and Hecto spectrograph benches. These commands tie directly to the ICE instrument server.
Motors within the Cryostat and outside of the Cryostat can be considered operationally separate for reasons of their differing responsibilities and independent function. Here their commands will be broken into distinct categories, with further separation between high-level and low-level control.

- **Cryostat**

 - **High-Level**

 - filter <name>
 Discerns via uploaded starbase table where to move each filter wheel in order to expose the requested filter, by name.

 - dekker <name>
 Moves the dekker wheel to the designated slot, identified by name and lookup table.

 - mos <id>
 Functionally identical to filter wheel movement, where ID can be a barcode, name, or other designation.

 - grism <name>
 Moves the grism wheel to a designated slot, identified by name and lookup table.

 - focus <mm>
 Moves the IR Array focus stage by a given amount, in millimeters.

 - valve <open/close>
 Opens or closes the gate-valve. A series of checks are performed, documented elsewhere.

 - filtdb <starbase table>
 Uploads new filter wheel definitions via starbase table.

 - mosdb <starbase table>
 Uploads new MOS wheel definitions via starbase table.

 - **Low-Level**

 Each coordinate system has fine positioning control, these commands are:

 - array <counts>
 - grism <counts>
 - filter <T counts> <B counts>
 - valve <counts>
It is worth pointing out that the given counts is offset by a defined motor scale. Typically a straightforward scale is assigned, where for example the 'array' focus would be in millimeters, and the top 'filter' rotation would be in degrees.

- **Guide/WFS**
 - **High-Level**
 - collimator <in|out> <in|out>

 Moves the collimator in or out of the light path, for WFS 1 and 2.
 - **Low-Level**
 - wfs1 <X counts> <Y counts> <F counts> <C counts>
 - wfs2 <X counts> <Y counts> <F counts> <C counts>

 Here counts will likely be defined in millimeters, however it is yet to be determined.

There exist a plethora of other commands, not necessary to the operation or interaction of the motion control server. A few are worth noting:

- command <text>
 Sends given text to the PMAC, and returns its response.
- abortCS <csName>
 Issues an abort request to the given coordinate system.
- killCS <csName>
 Abruptly stops all motion on the given coordinate system.
- killServer
 Closes communication with the PMAC and allows the server to exit.
- postGather <gatherList>
 Sets the next gather to register the passed gather variables.
- getGather
 Returns gather configuration and data from PMAC system memory.
- unmap <varName>
 Determines and returns the PMAC-name of a passed variable.
- listprog <progName>
 Returns the entire program listing for a given program name.
- listplc <plcName>
 Returns the entire PLC listing for a given PLC name.
Variables

Although it is hardly informative, attached to this page is a file of the currently 1615 published variables that are available for the MMIRS setup. In practice only a fraction of these are used.

Reference

- The **PMAC Control Server** page contains further detail.
- A list of published variables is attached to this page.
PMAC Control Server

The PMAC Control Server is software to allow setup-specific motor control through a powerful generic interface.

Configuration

Configuration is determined by a few basic setup files in human-readable format. The server interprets an overall setup file, interprets a motor-generic setup file, then looks for motor-specific setup files. Both the motor-generic and motor-specific setup files contain control information determined to be optimal for the motors in question. To stress the point, settings found among most motors would be set for all motors by an entry in the motor-generic file, then overridden for atypical motors in their motor-specific files.

With regards to the overall setup file, the config command takes coordinate system and motor specification arguments. For example, mmirs.tcl:

```
# Define and create programs foreach motor.
preprocess::config mmirs
array  {F  1                        }
grism  {G  2                        }
filter {T  5    B  6                }
valve  {V  3                        }
mosdek {M 15    D  4                }
wfs1   {X  7    Y  8    F  9    S 10}
wfs2   {X 11    Y 12    F 13    S 14}
```

Here, a control name of mmirs creates clients and servers, mmirsClient and mmirsServer, respectively. They address motors 1 through 15, with 5 and 6 assigned to coordinate system 'filter'. The complete name of motor 6 becomes 'filterB', a convention that avoids conflicts.

The following is an example of a default setup file, mmirs/default.setup:

```
defn defaultSetup {a} {

    &[${a}Coord]
    #[${a}Motor]->+[${a}Scale][${a}AxisLetter]+0

    p0 = [var  ${a}MHomeLimTrig 2]
```

p0 = [var ${a}PHomeLimTrig 2]
p0 = [var ${a}HomeAgainst 0]
p0 = [var ${a}HomeFlagTrig 1]

[${a}Feedback] = DLR#10C000
[${a}AxisEnable] = 1
[${a}Homed] = 0
[${a}HasLimits] = 1

[${a}HomeSpeed] = 160
[${a}HomeOff] = 0
...
}

And, an example of a motor-specific setup file, mmirs/filterB.setup:

var filterBScale 200.0
var filterBGUIScale 614400.0
defn loadSettings_filterB { }
{

[filterBiFlagMode] = DLR#20001

[filterBiFolError] = 85000
[filterBiFolWarning] = 70000
[filterBiPSoftLimit] = 0
[filterBiMSoftLimit] = 0
[filterBiErrDecel] = 1.2
[filterBiMaxVel] = 10000
[filterBHasLimits] = 0
...
}

It is worth pointing out that in the above examples, filterB.setup overrides the default.setup variable HasLimits. By default, motors will be regarded as having limits, but when filterB.setup is loaded it redefines this variable.
Reporting

The PMAC motor control system creates a large amount of useful data for each coordinate system and motors defined therein. This information is relayed back through interfaces to be available to engineers and observers. At the engineering level one can set any number of configuration parameters motor by motor. For safechecking purposes these values are not automatically ported back into setup files, so if new optimal settings are determined they are to be entered by hand.

Software is currently in development to graph acute motor behavior over the course of movement commands. Values available for inspection include Commanded, Target and Actual Positions, Bias, Encoder and DAC Voltage. It is hoped that this reporting will assist in fine tuning of individual motors.

Interfacing

The server interacts with the PMAC using a mixed ascii/binary tcp-based protocol developed and documented by DeltaTau. The server-side connection is managed by a C library which allows for simpler packet management and data parsing than would be possible in tcl.

There exist both engineering-level and observing-level graphical user interfaces for interaction with the PMAC control server. The server uses an ascii-based protocol implemented by a tcl library named msg. The operational abilities of msg are not addressed here in detail, suffice it to note that the library trivializes data synchronization between the server and clients. It is not intended that a server will operate with more than one client at a time, though the software does support this functionality.

The user interfaces are out of the scope of this page, but are addressed further on the Engineering GUI? and Observing GUI? pages. Further interfaces are to be referenced from the GUIs? page.

Command-Line Arguments

The PMAC control server accepts a few command-line arguments to direct its operation. Some arguments, like '-setup' are required while others are solely for debugging purposes. An argument list with brief explanations of their function can always be obtained via the '-help' argument, or no arguments at all. The complete list follows:

- `-help`
 Display a list of acceptable arguments with brief descriptions.
- `-setup <name>`
 Load the setup defined by the provided name. The setup data is loaded as a tcl file
from a standard directory, eg: setups/<name>.tcl. Further data is loaded from a subdirectory of the same name, eg: setups/<name>/<motorName>.tcl.

- **-stdout**
 Pipes everything to stdout that it would send to the PMAC, though indented. This proves invaluable to debugging as it allows direct examination of the PMAC programming.

- **-pmac**
 Sends commands to the PMAC. If this option is not given, no data is written to the PMAC, and the system is assumed to be in an operable manner.

- **-clients**
 Dynamically creates the client and server communications code. Client and server code is specific to setups and is named accordingly.

- **-server**
 Starts the server, which listens for clients and ties communication/control through to the PMAC.

- **-sim <server|pmac|none></server>**
 Simulation level at which to run the server. Either there can be no simulation (the default), PMAC simulation where outputs are disabled but the PMAC appears to move motors, or server simulation where the PMAC is never interfaced. This argument makes no difference unless the -server argument is also given.

Reference

- Low-level PMAC control and systems design derived from:
 - MMT f/5 Wave Front Sensor
 - Hecto Fiber Positioner
 - Magellan/Megacam Topbox
- High-level server software derived from the Magellan/Megacam Topbox.
- Applications to MMIRS include **Motion Control Server** instantiation.
MOS wheel push buttons

Overview

A PMAC PLC program will implement the push button MOS wheel operation. A PLC program is a constantly running pmac program. Nominally there is at least 1 PLC running monitoring safety status. Additional user-defined PLCs can be added. In this case the PLC will monitor the state of the manual buttons, and invoke the necessary PMAC programs to move the filter wheel.

Derived From

This is almost identical to the push button operation for the Megacam filter wheels

Components

There will be 2 PLC programs:

- The **local** switch will disable all computer driven motion control
- The **advance** push button will move the MOS wheel 1 slot position with each button press.
Bar Code scanner server

The bar code scanners server interfaces to the Omron bar code scanner via an RS-232 serial port connected to EDAS Ethernet-to-serial interface and makes the current bar code available to the science camera server.

A similar bar code scanner server already exists for the MMT MegaCam instrument. This server will be written as part of the Megacam/Magellan effort.

Msg Protocol Interface:

- Published Variables
 - sdata - current scanned bar code.
Vac gauge server

Overview

The Vacuum Gauge Server is a simple tcl program using the msg protocol library. It connects to the Pfeiffer vacuum gauge through an EDAS ethernet to RS-232 serial converter. It obtains the current vacuum reading from the gauge and publishes as a msg protocol variable.

Derived From

The server will use the Power Control Server control framework and the EDAS communications library as a basis for its implementation.

Commands

NONE

Variables

- mos_vacuum - the current pressure in the mos section in Torr
- cam_vacuum - the current pressure in the camera section in Torr

Reference

The Pfeiffer gauge protocol is documented here Pfeiffer vacuum protocol rs232 485 PM488BN_C.pdf
Overview

The Vacuum Pump Control Server is a simple tcl program using the msg protocol library. It connects to the Varian vacuum pump through an EDAS ethernet to RS-232 serial converter. The server will allow the

Derived From

The server will use the Power Control Server control framework and the EDAS communications library as a basis for its implementation.

Commands

- state on|off

Variables

- state - on/off state of the vacuum pump.
- speed
- current
- power
- temp

Reference

varian turbo-70 controller turbo-catalog.pdf
Heater - Auto Fill control server

Overview

The Heater and Auto Fill Control Server is a simple tcl program using the `msg protocol` library. It connects to the Omega PID temperature controllers via ethernet. The server allows the PID loop to be started and its set point and parameters to be controlled.

Derived From

The server will use the Power Control Server control framework as a basis for its implementation.

Commands

- `autofillpid on|off`
- `mosheat_pid on|off`
- `camheat_pid on|off`

Variables

- `autofillpid` - when the state is set to on the PID loop is closed and active control begins.
- `mosheat_pid`
- `camheat_pid`

- `autofillset` - target control value for the PID loop in degrees K
- `mosheat_set`
- `camheat_set`

- `autofullramp` - ramp rate of target control value in degrees K/min
- `mosheat_ramp`
- `camheat_ramp`

- `autofillP` - PID control proportional gain setting
- `autofillI` - PID control integral gain setting
- `autofillD` - PID derivative gain setting

- `camheat_P`
- camheat_I
- camheat_D

- mosheat_P
- mosheat_I
- mosheat_D

Reference

Omega-iSeries-Communications.pdf
Overview

The Camera - Mos section temperature monitor server is a simple tcl program using the msg protocol library. It connects to the Lakeshore temperature monitor via an EDAS ethernet to RS-232 converter. It obtains the current temperature from the monitor and publishes it as a msg protocol variable.

Derived From

The server will use the Power Control Server control framework and the EDAS communications library as a basis for its implementation. In addition the communications library for the Lakeshore 218 has been developed for the SWIRC camera at the MMT.

Commands

NONE

Variables

- cam_temperature
- mos_temperature

Reference

Lakeshore 218_Manual.pdf page 75
Focal Plane Temperature Control

Overview

The Focal Plane Temperature Control server is a simple tcl program using the msg protocol library. It connects to the Lakeshore PID temperature controller via an EDAS ethernet to RS-232 converter. The server allows the PID loop to be started and its set point and parameters to be controlled.

Derived From

The server will use the Power Control Server control framework and the EDAS communications library as a basis for its implementation.

Commands

- fp_pid on|off

Variables

- fp_pid - when the state is set to on the PID loop is closed and active control begins.
- fp_set - target control value for the PID loop in Kelvin
- fp_ramp - ramp rate for target control value in Kelvin /min
- fp_P - PID control proportional gain setting
- fp_I - PID control integral gain setting
- fp_D - PID derivitive gain setting

Reference

Phytron Stepper Amp server

Overview

The Phytron Stepper Amp server is a simple tcl program using the msg protocol library. It connects Phytron stepper amplifier an EDAS ethernet to RS-232 serial converter.

The server allows the amp settings for each motor to be setup. The motor temperature for each motor within the dewar can be read back.

Derived From

The server will use the Power Control Server control framework and the [EDAS communications library] as a basis for its implementation.

Commands

Variables

- motor temps

Reference

Phytron motor drive with diagnostics and rs485 control PAB93-70.pdf

Phytron Temperature measurement module TEO gb.pdf
Cal lamp server

The cal lamps server interfaces to the calibration lamp Electronics to allow calibration exposures with various lamps to be made.

The code to control this function will be integrated into the powserver software and will require writing a small tcl module to control the hardware hardware.

The hardware for the calibration lamps is not yet defined. Choosing pulizzi power control of Webdac boxes will allow reuse of the existing cal lamp system used with Hectospec.
Power Control Server

Overview

The Power Control Server connects to Pulizzi Engineering 120v rack mounted power intelligent power controllers. These controllers allow remote switching of eight 120v outlets each. They are connected directly to the ethernet and each is assigned an IP address.

A configuration file allows the individual outlets in a controller to be assigned a name and then the status and control of that outlet is available by name from the server.

Multiple controllers may be controled from a single server and multiple servers may be run at the same time with different configurations.

An example config file section:

```
# Bench pulizzi - pulz9
#
array set pulizzi9 {
    edas edas2 port 1 lock none

    attn    @@@@
    reply   ONLINE!
    prot    @@@@

    J1      spec_steppers
    J2      spec_camera
    J3      spec_bench
    J4      hsshutter
    J5      chelle_steppers
    J6      chelle_camera
    J7      chelle_bench
    J8      chelle_grating
}
```

Derived From

The Power Control Server program is currently used with the F5 instruments at the MMT.
Commands

- The low level outlet names J1 through J8 can be used to command control of the outlets. For example to turn J1 off the server recognizes the command:

 \[J1 \text{ off} \]

- Each named outlet from the configuration file is registered as a command and can be commanded similarly to the low level outlet names.

Variables

- The low level outlet names J1 through J8 are published as variables and can be used to set or get the value of an outlet. For example to turn J1 off the server recognizes the command:

 \[\text{set J1 off} \]

 To get the value of J3 the server recognizes the command:

 \[\text{get J1} \]

 and replies with the state of J3.

Reference

The power control software provides a framework for publishing a set of named controllable values that has been used with several other devices in addition to the Pulizzi Engineering intelligent power controllers. A new device can be integrated into the framework by providing a set of routines and the names of the low level values to be controlled.

Routines:

- _open - Open the device, provide any necessary initialization
- _close - Close the device
- _stat - Poll the current values of the controlled values
- _set - Set the value of a controlled value

The F5 instruments at the MMT also use this framework to control WebDAC 100 I/O boxes,
LabJack U12 I/O boxes and a Blitz shutter controller. Two higher level drivers called plugset and valuset allow groups of names to be controlled from a single named control value. When the high level plugset name is set all of the values in the group are set to the same value. This is typically used to switch groups of pulizzi outlets on and off together or to set the control voltages of several outputs at the same time. The plugset type is restricted to on/off control while the valueset type allows the value to be floating point. This distinction is used when automatically generating a user interface for controlling power control server servers.
Rack monitor server

Overview

The Rack monitor server is a simple tcl program using the msg protocol library. It connects to the Acromag Ethernet 4-6 channel TC monitor in each rack. It obtains the rack temperature reading from the monitor and publishes as a msg protocol variable.

Derived From

The server will use the Power Control Server control framework and the [EDAS communications library] as a basis for its implementation.

Commands

NONE

Variables

- rack1_temperature
- rack2_temperature

Reference

Acromag ethernet TC monitor 965EN_751a.pdf

Acromag Ethernet 4-6 channel TC monitor 965EN.pdf
Log Server

Overview

The Log server tcl program using the msg protocol library. It connects to each of the other servers in the control system and subscribes to selected variables that the other servers publish. It writes the values of these selected variables to several log files at specified intervals.

The Log server is a client of all the other servers in the system and is a server only as a convenience. It is included in the servers list because it runs as a daemon without a GUI.

Derived From

The msg protocol library and various specialized lab loggers currently in use.

Commands

NONE

Variables

- The log server published all of the variables that is subscribes to providing a one stop shopping source of system wide info.

Reference
MMIRS/GUIs

GUILs

- Planning GUI
- Observing GUI
- Image Display - DS9
- Guide GUI
- GMAP star selection
- Cryostat Operations
- Engineering GUI
- Status Displays
 - Instrument Configuration GUI
 - Cryostat VAC/TEMP charts
 - Exposure Status Display
 - Telescope Status Display
 - code sample.pdf
Planning GUI

Overview

The planning GUI is used to layout slit masks and create the CNC input for the slit mask cutting machine.

The slit mask program used for IMACS will be adapted for use with MMIRS.
Observing GUI

Overview

This is a TclTk GUI interface that provides an interface to both engineering and science observing. It provides status lights, pull-down selection lists and buttons to control observing. Its most important function is sequencing all the steps necessary for observation sequence. It also provides reminders if subsystems are not in nominal configuration.

Derived From

The observing GUI will be based on the "spice" GUI used with Hectospec/chelle and the "mice" GUI used with Megacam and SWIRC.

Fundamental observing sequence and exposure sequence already exist for both imaging and spectroscopic mode. Support for multiple observing modes must be added and as well as an interface to do specialized tasks such as mask alignment.

Components

MICE display

- Status Display
 - Red/Green state for power to each device
 - Red/Green state for status of all software device servers

- Pages
 - StartUp Page
 - This page provides a column of buttons to allow the observer to sequentially go through to power up the electronics and start the associated server applications
 - Cryostat
 - Thermal Vac
 - Guide/WFS
 - Callamps

 - Standard Operations
 - Housekeeping Display
 - Focal Plane temperature
 - Callamp status
 - MOS temp/pressure
 - Camera temp/pressure

 - Exposure Display
 - Count within the exposure loop
 - Exposure type, e.g. skyflat, object, etc.
 - State of current exposure, e.g. exposing, readout, etc.

 - Configuration
 - Name of current configuration file (MOS only)

 - Instrument Display
 - Shows Actual and Commanded values for each of the axes:
 - Filter
 - Grism
 - Decker
 - MOS
 - Focus
 - Gate Valve
Entry boxes for manual offsets, filter, grism, focus MOS

- Operation
 Line for each type of exposure including parameters

 - Auto Operations
 Similar to standard operations, but accepts a catalog name that describes a sequence of exposures that it will automatically sequence. The catalog nominally allows specification of filter, exposure time and telescope dither offsets.

- Dither Tool
 This tool facilitates the creation and formatting of the observing catalog. This example shows a sample dither pattern.

- ObsLog
 A utility for allowing the observer to add comments to the automatic observing log generated by the system. The resulting PostScript log file is shown.

MMT OBSERVATORY

SWM LOG

UT Date 09/21/2008

Observer: BRAK WYATT

Focus

File

<table>
<thead>
<tr>
<th>File</th>
<th>Title</th>
<th>Exp</th>
<th>Fit</th>
<th>UT</th>
<th>AA</th>
<th>Dec</th>
<th>Alt</th>
<th>Instrument</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>P180-C</td>
<td>0819</td>
<td>10</td>
<td>3</td>
<td>19:01</td>
<td>41:55:46</td>
<td>2.27</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>P180-C</td>
<td>0813</td>
<td>10</td>
<td>5</td>
<td>19:05</td>
<td>41:55:46</td>
<td>2.27</td>
<td>0</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>P180-C</td>
<td>0813</td>
<td>10</td>
<td>7</td>
<td>19:07</td>
<td>41:55:46</td>
<td>2.27</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>P180-C</td>
<td>0813</td>
<td>10</td>
<td>9</td>
<td>19:07</td>
<td>41:55:46</td>
<td>2.27</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

ObsLog

File Table

<table>
<thead>
<tr>
<th>File</th>
<th>Title</th>
<th>Exp</th>
<th>Fit</th>
<th>UT</th>
<th>AA</th>
<th>Dec</th>
<th>Alt</th>
<th>Instrument</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>P180-C</td>
<td>0819</td>
<td>10</td>
<td>3</td>
<td>19:01</td>
<td>41:55:46</td>
<td>2.27</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>P180-C</td>
<td>0813</td>
<td>10</td>
<td>5</td>
<td>19:05</td>
<td>41:55:46</td>
<td>2.27</td>
<td>0</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>P180-C</td>
<td>0813</td>
<td>10</td>
<td>7</td>
<td>19:07</td>
<td>41:55:46</td>
<td>2.27</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>P180-C</td>
<td>0813</td>
<td>10</td>
<td>9</td>
<td>19:07</td>
<td>41:55:46</td>
<td>2.27</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>
Guide GUI

Overview

The Guide GUI is a tcl scripted enhancement to the SAO ds9 image display program which itself is written in tcl/tk. The GUI connects to a currently running guide server and reads in the guide camera and image descriptions. It builds the GUI from these descriptions.

The GUI allows the real time image of the guide stars to be viewed in a ds9 frame and the guider corrections to be started and stopped. In addition the parameters controlling the guide servo loop are available. Time series plots of the total and sent corrections can be displayed to observe guider performance and debug guiding issues.

Derived From

The guide GUI is currently in use for Megacam, Hectospec and Hectochelle at the MMT.
GMAP star selection

Overview

Utility to select stars for the guide and wavefront sensing camera

Derived From

This is Magellan's GMAP star selection utility. We will use it for our guide star and wave-front sensing star selection.

We must provide:

- a script that positions the cameras
- a geometry file that defines the camera field of view: 14' box with 7' inscribed circle excised.
Cryostat Operations

Overview

The Cryostat Operations GUI is a procedural type interface that leads the user through a task by presenting a list of steps and checking the status of the system to assure the order and safety of each step. This GUI will be used when performing the following tasks:

- Warm up
- Cool down
- Mask change

Derived From

Similar interfaces have been created for the Hectospec positioner fiber and guide star set up procedures. The Hectospec GUI is shown here.
Engineering GUI

The Engineering GUI allows fine control over and evaluation of the system. The motor control interface gives engineers a means for fine tuning all motors defined.

Motor Control Interface

On startup the user is shown a list of coordinate systems and motors therein; see attached pmacGUI.gif. For each coordinate system, the user has buttons to command:

- **Stop**
 Halts and disables (offline) all motors.

- **Abort**
 Halts all motion programs and enables (online) all motors.

- **Clear**
 Not yet completed

- **Command**
 Opens interface to command positions, below.

- **Gather**
 Opens interface to define gather data, below.

- **Status**
 Opens interface to display status bits, below.

For each motor a name-button is displayed in corresponding color status, where red indicates...
the motor is offline, and green online. The user can click on its name-button to open the
general readout interface, below. The general readout interface allows for further readout
interfaces, categorizing data access by relevance. For example, the button at the bottom of
the general readout interface opens the debug readout interface. Both interfaces are
discussed later. For each motor one is also shown Target and Actual positions, home status,
and limit switch status. The home status label illuminates green when the motor has been
homed. Each of the limit switch status labels show red for hardware- and software-limit
triggered, orange for hardware-limit triggered, yellow for software-limit triggered, and green
for neither limit triggered.

Command Interface

The command interface features a series of entries
and buttons useful for sending movement
instructions to individual motors and coordinate
systems. The per-axis buttons are:

- **Home**
 Sends a home command, calling the home
 program for the individual motor.
- **Stop**
 Sends a requested stop motion command,
 decelerating the motor to a halt.
- **Move**
 The move button next to the blue entry sends
 a move request corresponding to the position
 entered in the blue entry box. If the position
 is '-' the motor stays in its current position.
- **Move**
 The move button next to the green entry box behaves similarly.

There also exist two buttons that request coordinate system wide events. These buttons are:

- **Move all to 1st Position**
 Requests a synchronized movement of all axes to their first (blue) positions. As noted
 above, any motors with a requested move of '-' stay in their current positions.
- **Move all to 2nd Position**
 Requests a synchronized movement of all axes to their second (green) positions.

Gather Interface

The gather interface allows for a selection of
PMAC data to be recorded during subsequent
motor movements. For each motor one can check the data of interest, up to a total of 48 requests. This data is relayed to the PMAC where it is held until the next move command.

There exists only one button for this interface:

- **Post**
 Sends the current data selection to the /MMIRS/Servers/PMAC Control Server.

When a move is requested, the PMAC shuffles the gather selections into active memory and issues a gather command. Data can then be read out of the gather buffer and displayed graphically for easy interpretation. Readout and display software is currently in development. Access to a display interface will likely necessitate another button on this gather interface, however such design is yet to be determined.

Status Interface

The status interface is a non-interactive display of coordinate system wide status bits. For each motor, the PMAC stores a 48-bit word of status information, of which a selective amount is displayed. This interface pools this information for each motor registered to the requested coordinate system, and represents each bit as an on (red) or off (grey) circle.

There is opportunity in the software to toggle display bits on and off, and those shown have been determined fundamental to engineering.

Reference

- The Engineering GUI connects to the /MMIRS/Servers/PMAC Control Server.
- Observers are intended to use the Observing GUI.
This display shows, at a glance, the current configuration of the Megacam shutter and filter wheels. A similar display will be created for MMIRS.
Exposure Status Display

This display shows the status of the current exposure and will need only minor updating for MMIRS.

<table>
<thead>
<tr>
<th>Camera</th>
<th>SPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoe</td>
<td>YES</td>
</tr>
<tr>
<td>Config</td>
<td>ngc1234</td>
</tr>
<tr>
<td>Time left</td>
<td>5000</td>
</tr>
<tr>
<td>Total time</td>
<td>15000</td>
</tr>
<tr>
<td>File name</td>
<td>ngc1234.0074</td>
</tr>
<tr>
<td>Directory</td>
<td>SPEC/2003.0716</td>
</tr>
<tr>
<td>Filters</td>
<td>NONE</td>
</tr>
<tr>
<td>Image type</td>
<td>object</td>
</tr>
<tr>
<td>Exposure Status</td>
<td>exposing</td>
</tr>
<tr>
<td>Guiding</td>
<td>YES</td>
</tr>
<tr>
<td>Guide</td>
<td>YES</td>
</tr>
<tr>
<td>Boxes</td>
<td>2</td>
</tr>
<tr>
<td>Correcting</td>
<td>YES</td>
</tr>
<tr>
<td>GValid</td>
<td>YES</td>
</tr>
<tr>
<td>Grating</td>
<td>270 gpm</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Wb</td>
</tr>
<tr>
<td>Focus</td>
<td>-0.235</td>
</tr>
</tbody>
</table>
Telescope Status Display

This display shows the current status of the telescope pointing, including the various types of offsets.

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog RA</td>
<td>-01:00:00.00</td>
</tr>
<tr>
<td>Catalog Dec</td>
<td>-100:00:00.00</td>
</tr>
<tr>
<td>Epoch</td>
<td>2000.00</td>
</tr>
<tr>
<td>Pos Ang</td>
<td>-360.02</td>
</tr>
<tr>
<td>Az Offset</td>
<td>0.00</td>
</tr>
<tr>
<td>El Offset</td>
<td>0.00</td>
</tr>
<tr>
<td>InstAzOff</td>
<td>0.00</td>
</tr>
<tr>
<td>InstElOff</td>
<td>0.00</td>
</tr>
<tr>
<td>RA Offset</td>
<td>0.00</td>
</tr>
<tr>
<td>Dec Offset</td>
<td>0.00</td>
</tr>
<tr>
<td>RA total</td>
<td>-01:00:00.00</td>
</tr>
<tr>
<td>Dec total</td>
<td>-100:00:00.00</td>
</tr>
<tr>
<td>Par Ang</td>
<td>-360.0000</td>
</tr>
<tr>
<td>Hour Ang</td>
<td>-00:00:00.008</td>
</tr>
<tr>
<td>Airmass</td>
<td>1.00</td>
</tr>
<tr>
<td>Azimuth</td>
<td>179.9822</td>
</tr>
<tr>
<td>Elevation</td>
<td>89.9575</td>
</tr>
<tr>
<td>Rot Ang</td>
<td>0.0224</td>
</tr>
<tr>
<td>Focus</td>
<td>0</td>
</tr>
<tr>
<td>Date</td>
<td>2005-04-29</td>
</tr>
<tr>
<td>MJD</td>
<td>53489.75441</td>
</tr>
<tr>
<td>UT</td>
<td>18:06:20</td>
</tr>
<tr>
<td>LST</td>
<td>01:13:58.253</td>
</tr>
</tbody>
</table>
#!/usr/bin/env wish

#lappend auto_path $env(MMTITCL)
load $env(MMTILIB)/libtclsignal.so

set sub_list {
 TELESCOPE ra ra {} TELESCOPE dec dec {}
 TELESCOPE pa pa setposang TELESCOPE ha ha {} TELESCOPE airmass airmass {reformat %.2f}
 TELESCOPE az az {reformat %.4f}
 TELESCOPE el el {reformat %.4f} TELESCOPE rot rot {reformat %.4f}
 TELESCOPE cat_id cat_id {}
 TELESCOPE cat_ra cat_ra to_hms TELESCOPE cat_dec cat_dec to_hms TELESCOPE epoch epoch {reformat %.2f}
 TELESCOPE dateobs dateobs {}
 TELESCOPE ut ut {} TELESCOPE lst lst {} TELESCOPE mjd mjd {}
 TELESCOPE instazoff instazoff {reformat %.2f}
 TELESCOPE insteloff insteloff {reformat %.2f} TELESCOPE azoff azoff {reformat %.2f} TELESCOPE eloff eloff {reformat %.2f}
 TELESCOPE decoff decoff {reformat %.2f} TELESCOPE focus focus {reformat %.0f}}

set gui_list {
 "Object Name" cat_id lightblue black "Catalog RA" _cat_ra lightblue black "Catalog Dec" _cat_dec lightblue black Epoch _epoch lightblue black "Pos Ang" posang lightblue black
 "Az Offset" _azoff orange black "El Offset" _eloff orange black "InstAzOff" _instazoff orange black "InstElOff" _insteloff orange black
 "RA Offset" _raoff orange black "Dec Offset" _decoff orange black
 "RA total" ra lightblue black
 "Dec total" dec lightblue black "Par Ang" _pa lightblue black "Hour Ang" ha lightblue black "Airmass" __airmass lightblue black
 Azimuth _az lightgreen black Elevation _el lightgreen black "Rot Ang" _rot lightgreen black "Focus" _focus lightgreen black
 "Date" dateobs yellow black
 "MJD" mjd yellow black
 "UT" ut yellow black
}

set bg_color yellow
set fg_color black
set font "*-times-bold-r-normal--*-240-*-*- -*-*-*-*-*-*"

setposang { name index op } {
 global posang rot pa _pa
 catch { set posang [format %.2f [expr $pa - $rot]] }
 set _pa [format %.4f $pa]
}

reformat { format name index op } {
 upvar #0 $name var
 global _$name
 set _$name [format $format $var]
}

to_hms { name index op } {
 upvar #0 $name var
 global _$name
 set _$name [hms $var]
}

dualtemp { name index op } {
 upvar #0 $name var
 global _$name
 # Convert Celsius to Fahrenheit and display both.
 set AT_F [format "%02.2f" [expr (($var * 9./5.) + 32.0)]]
 set _$name "$var C/$AT_F F"
}

hms { decimal } {
 global parameters
 if {$decimal < 0} {
 set signchar "-"
 set decimal [expr $decimal * -1]
 } else {
 set signchar " "
 }
 set decimal [expr int($decimal * 360000 + 0.5)/360000.]
 set frac_degrees [expr int($decimal)]
 set frac_degrees_dec [expr $frac_degrees * 60]
 set frac_degrees_hours [expr $frac_degrees_dec * 24]
 set frac_degrees_days [expr $frac_degrees_hours * 365.25]
 set frac_degrees_years [expr $frac_degrees_days * 365.25]
 set frac_degrees_years [expr $frac_degrees_years * 1000000]

 # Check if we are on a Linux system. If so, use the degree symbol.
 # Else, use the caret to indicate degrees.
 return [format "$signchar%02d:%02d:%05.2f" [expr $frac_degrees_dec] [expr $frac_degrees_hours] $frac_degrees_days]
 set _name "$var C/$AT_F F"
}

Connect to the servers
#lappend auto_path $env(MMTITCL)
proc setposang { name index op } {
 global posang rot pa _pa
 catch { set posang [format %.2f [expr $pa - $rot]] }
 set _pa [format %.4f $pa]
}
if {![info exists $server]} {
 msg_client $server
 msg_keealive $server 5000 5000
}
msg_subscribe $server $var $var $code

Build the GUI
wm title . "MMTO Status"
set w {}
foreach { label var bg fg } $gui_list {
 grid {
 [label $w.l_${server}_$var -text $label -relief groove -width 14 -font $font -bg $bg -fg $fg]
 [entry $w.e_${server}_$var -textvariable $var -state disabled -relief sunken -width 14 -font $font -bg $bg -foreground $fg -justify center]
 }
}
System Management

To simplify the management of the computer systems at remote observatories we use the following tools and procedures:

- CVS -- Concurrent Versions System
 All source code is maintained in a backed-up repository in Cambridge using CVS. Source code can be edited on any of our computers at any site and then checked back into the repository. Prior versions of the code can be recovered from the repository if necessary.

- Cron Jobs
 - Daily cron jobs clean old logs and old data files
 - Daily cron jobs terminate and restart all server logs

- Acct Management
 Before the start of each new observer, the observing account is restored from a pristine archival copy. This insures that any modifications to the environment made by previous observers will not hamper the next observer.

- Bootstrapper
 The bootstrapper is a shell script we have developed to simplify the installation of all our software onto a new computer system. It sets up user accounts, installs packages such as Tcl/Tk and Iraf, and checks out all the SAO developed code out of the CVS repository.

- System Backup
 Critical directories on each of the remote computers are backed up to Cambridge automatically. This eliminates the need to write backup tapes at the remote sites.

- Instrument Data Archiving
 Automatic scripts copy the previous night's data to Cambridge each day where they are archived on disk and to tape. In practice this means that it is not necessary for each observer to transport their own data home on physical media. It is made available to them over the network from the archive after their run. The bandwidth from the MMT is adequate that even Megacam data can be transferred to Cambridge automatically. From Magellan, however, it will be necessary to physically transport the data, most likely using USB hard drives.

- Shadow system
 We maintain at SAO a computer system identical to the MMT system and the future
Magellan system. This gives us the capability to test all software in Cambridge before installing in at the observatories.
Testing and Verification

Overview

Each component in the system must be verified that it meets the specifications. This applies most directly to the hardware control components.

Each component must also be tested for robustness to verify that it can perform thousands of repetitions without errors. Automated tests will be defined and scripts will be written to control them and to log results.

In addition, the software must support the defined system tests.

- Component Verification

 For each hardware server, the software must be tested and verified against the performance specifications. The software will be base-lined at completion of each component.

 - The Project Engineer must provide the test specification and support equipment.
 - The software team must provide the software, operating instructions and logging of the test.
 - The Project Scientist must sign off on the performance of each of the components.

- System Verification

 The system will be operated using the science and observing GUI interfaces. The Project Scientist must define the test and sign off on the performance. The software will be base-lined at test completion.

- Pre-Ship Test

 The project scientist will define the pre-ship test. Upon successful completion of the pre-ship test the software will be base-lined in CVS.

- Post-Ship Test

 The pre-ship baselined software will be installed at the remote site. The post-ship test
will be performed. Discrepancies will be recorded and troubleshooting will isolate the components.

- Installation Test

The post-ship test software will be re-exercised after installation on the telescope.
Data Products

In this section we present examples of the following data products:

- A FITS header for an exposure taken in imaging mode
- A FITS header for an exposure taken in MOS mode
- A sample of an aperture map that gets appended as a FITS table to the spectral image.
- We end with a brief survey of Data reduction packages.
moshdr.lst Mon May 02 14:10:29 2005 1

RDCS2.0598.fits[2048,2048][real]: rdc2
No bad pixels, min=0., max=0. (old)
Line storage mode, physdim [2048,2048], length of user area 3524 s.u.
Created Tue 00:00:00 01-Jan-1980, Last modified Tue 00:00:00 01-Jan-1980
Pixel file "RDCS2.0598.fits" [ok]

PCOUNT = 0 /NO RANDOM PARAMETERS
GCOUNT = 1 /ONE GROUP
BZERO = 24495
BCSCALE = 1 /REAL = TAPE * BCSCALE + BZERO
DATA-MAX= 52833
DATA-MIN= -3843
FILENAME = 'MMIRS/2007.0421/RDCS2.0598'
NAMS = 32
READAL = T /INITIAL READ VIA LINE RESET MODE
DETSIZE = '[1:2048,1:2048]' / DET size
CCDSEC = '[1:2048,1:2048]' / CCD section
AMPSEC = '[1:2048,1:2048]' / AMP section
DATASEC = '[1:2048,1:2048]' / DATA section
DETSEC = '[1:2048,1:2048]' / DET section
ORIGSEC = '[1:2048,1:2048]' / ORIG section
TIMFIRST= '2007-04-21 06:18:40' / TIME AT START OF FIRST READOUT
TIMLAST = '2007-04-21 06:19:40' / TIME AT END OF LAST READOUT
CCDSUMGN= '/data/mm/idsa/lib/runlib/ir32asc.bin' /IR SIGNAL FILE

SERIALID = 'Hawaii2-34'
GAIN = 4 /GAIN, ELECTRONS PER ADU
MAGNOISE = 31 /NOISE, ELECTRONS
FOWNUM = 1 /NO. FRAMES IN BEGINNING AND IN ENDING SAMPLES
CDMTOUT= 0 /EDT CONTROLLER TIMEOUTS
SECPX1 = 0.15 /X PIXEL SCALE, ARC-SEC
SECPX2 = 0.15 /Y PIXEL SCALE, ARC-SEC
OBJECT = 'rdcs2' / object name
OBSERVAT = 'Magellan' / observers
PROPID = 'SAO-3' / observing proposal ID
FI = 'W. Brown' / principal investigator
DARKTIME= 60000 /total elapsed time, seconds
IMAGEYPE= 'object' /object, flat, bias, etc.
EXPTIME = 60000 /actual integration time, seconds
DATE-OBSE = '2007-04-21T06:18:33' / UT date (yyyy-mm-ddThh:mm:ss) of observation
TELESCOP= 'Clay_F5' / telescope name
CORRECTOR = 'NONE' / telescope corrector
UT = '06:18:33' / universal time (start of exposure)
ST = '12:52:42.459' / sidereal time
MJD = 53481.26289999999151 / modified julian date
RA = '13:50:45.96' / right ascension (hh:mm:ss)
DEC = '+60:07:03.00' / declination (dd:mm:ss)
EQUINOX = 2000.000000 / equinox of RA and Dec
AIRMASS = 1.155 / airmass
ROTANGLE = '25.34660536' / telescope rotator angle (degrees)
TELFOCUS= '10336.410' / telescope focus

--- MOS configuration keywords --

OBSMODE = 'MOS' / instrument mode
DECKER = 'slit' / dekker position
MOG = 'brown2' / mos-wheel id
GRISM = 'NONE' / grism id
INSFOCUS = '2345.6' / instrument focus
APERTURE = 'rdcs2_11' / aperture

--- NO WCS keywords --

POSANGLE= -180.03700 / telescope position angle
RA = '-00:58:11.620' / hour angle
INSTAZ = '-34.00000000' / instrument azimuth (arcsec)
INSTEL = '-11.00000000' / instrument elevation (arcsec)
PARANGLES = '-154.6907600' / telescope parallactic angle (degrees)
TELAX = '0.00000000' / telescope azimuth offset (arcsec)
TELEL = '0.00000000' / telescope elevation offset (arcsec)
CAT-RA = 'RDCS2' / telescope catalog ra
CAT-DEC = '60107:07' / telescope catalog dec
CAT-RAFM = 'RDCS2' / telescope catalog ra proper motion
CAT-DCPFM = 'RDCS2' / telescope catalog dec proper motion
CAT-EBF = '2000.0000000' / telescope catalog epoch

RECID = 'clay_f5.20070421.061716' / archive ID for observation

LT1 = 0
LT2 = 0
LTM1 = 1
LTM2 = 1

--- Section IX.10 Software -- Data Products ---
Sample Hectospec aperture file. This file is appended to the data as a FITS table extension
A similar file will be generated for MMIRS slit definitions

<table>
<thead>
<tr>
<th>aperture</th>
<th>beam</th>
<th>object</th>
<th>ra</th>
<th>dec</th>
<th>target</th>
<th>fiber</th>
<th>platex</th>
<th>platey</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>target</td>
<td>14:34:10.797</td>
<td>34:31:50.509</td>
<td>8965</td>
<td>41</td>
<td>210.546000</td>
<td>172.343000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>target</td>
<td>14:34:05.400</td>
<td>34:47:23.550</td>
<td>10336</td>
<td>70</td>
<td>69.836000</td>
<td>244.473000</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>target</td>
<td>14:33:30.810</td>
<td>34:35:03.951</td>
<td>9238</td>
<td>42</td>
<td>137.914000</td>
<td>117.206000</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>target</td>
<td>14:33:57.157</td>
<td>34:46:37.806</td>
<td>10268</td>
<td>69</td>
<td>67.361000</td>
<td>225.406000</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>sky</td>
<td>0:00:00.000</td>
<td>0:00:00.000</td>
<td>-1</td>
<td>43</td>
<td>151.387000</td>
<td>133.066000</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>target</td>
<td>14:33:16.460</td>
<td>34:44:06.510</td>
<td>10041</td>
<td>68</td>
<td>44.703000</td>
<td>139.110000</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>target</td>
<td>14:32:28.274</td>
<td>34:38:52.288</td>
<td>9575</td>
<td>44</td>
<td>37.299000</td>
<td>26.784000</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>target</td>
<td>14:33:35.565</td>
<td>34:44:31.504</td>
<td>10087</td>
<td>67</td>
<td>61.885000</td>
<td>175.379000</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>target</td>
<td>14:34:26.006</td>
<td>34:33:31.940</td>
<td>9103</td>
<td>45</td>
<td>213.085000</td>
<td>209.021000</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>target</td>
<td>14:33:19.017</td>
<td>34:43:31.024</td>
<td>9991</td>
<td>66</td>
<td>52.523000</td>
<td>140.547000</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>target</td>
<td>14:32:29.678</td>
<td>34:18:56.865</td>
<td>8063</td>
<td>291</td>
<td>210.374000</td>
<td>-76.054000</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>target</td>
<td>14:32:24.299</td>
<td>34:36:46.563</td>
<td>9405</td>
<td>20</td>
<td>50.802000</td>
<td>8.810000</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>sky</td>
<td>0:00:00.000</td>
<td>0:00:00.000</td>
<td>-1</td>
<td>19</td>
<td>247.089000</td>
<td>57.954000</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>target</td>
<td>14:32:37.541</td>
<td>34:15:44.563</td>
<td>7815</td>
<td>293</td>
<td>247.381000</td>
<td>-79.380000</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>target</td>
<td>14:33:17.431</td>
<td>34:25:52.574</td>
<td>8576</td>
<td>18</td>
<td>202.617000</td>
<td>45.355000</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>target</td>
<td>14:32:33.853</td>
<td>34:20:17.972</td>
<td>8171</td>
<td>294</td>
<td>203.077000</td>
<td>-61.477000</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>target</td>
<td>14:32:51.785</td>
<td>34:30:42.133</td>
<td>8883</td>
<td>17</td>
<td>132.682000</td>
<td>25.259000</td>
</tr>
</tbody>
</table>
Three potential software packages for multislit spectroscopic data reduction have been identified:

- the COSMOS package written by Gus Oemler at Carnegie for IMACS: http://www.ociw.edu/~oemler/COSMOS.html
- the Gemini software for GMOS http://www.gemini.edu/sciops/instruments/gmos/gmosIndex.html
- a data reduction pipeline under development by Armondo Gil de Paz for EMIR http://www.ucm.es/info/emir/
Development Estimates

Most of the MMIRS software modules are derived from similar modules for other instruments. We assign a complexity value by considering the amount of code reuse, the number of interfaces and the interconnectedness of the module. Modules that are de-coupled from the overall observing environment are inherently less complex that those that are part of the telescope and facility interaction.

Also many of the GUIS and some servers are already implemented for existing instruments. The major effort in these cases involves integrating the new components in the existing code and then regression testing all of the instruments to re-certify the code.

e.g.

- Guide Server
- Observing GUI
- Guide GUI

New infrastructure will be developed for some of the components that will ultimately simplify development and coding but does incur some infrastructure development costs.

The complexity codes range from:

- 0 - code complete
- 1 - least complex
- 3 - most complex

Hardware Control

<table>
<thead>
<tr>
<th>complexity</th>
<th>module</th>
<th>estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>barcode scanner server (megacam topbox has a barcode scanner)</td>
<td>2 wks</td>
</tr>
<tr>
<td>2</td>
<td>pmac motion control server</td>
<td>8 wks</td>
</tr>
<tr>
<td></td>
<td>dewar motors (steppers/no encoders)</td>
<td>4 wks</td>
</tr>
<tr>
<td></td>
<td>wfs/guide motors</td>
<td>1 wk</td>
</tr>
<tr>
<td></td>
<td>push button - PLC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Engineering GUI</td>
<td>1 wk</td>
</tr>
<tr>
<td>1</td>
<td>science camera server</td>
<td>2 wks</td>
</tr>
</tbody>
</table>
5 science cameras already deployed using the same server software
 detector - done
 instrument - 1 page
 telescope - done
 HK - mostly done

1 Thermal Vac Control
 Multiple hardware and protocols

 HK monitoring (IR array) 1 wk
 SWIRC has HK monitoring code
 focal plane heater 1 wk
 all ccd cameras have a heater - this one is easier
 cryo heaters 1 wk
 vacuum gauge 1 wk
 vacuum pump 1 wk

Power Control Server

2 Rack Monitor 2 wk
 (clunky binary format protocol)

1 calibration lamp ?

2 wfs/guide camera server 2 wk
 similar to Carnegie Magellan camera

2 Log Server 2 wk
 (infrastructure development)

External connections

<table>
<thead>
<tr>
<th>complexity</th>
<th>module</th>
<th>estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>magellan telescope protocol translator</td>
<td>0 wk</td>
</tr>
<tr>
<td></td>
<td>done for megacam</td>
<td></td>
</tr>
</tbody>
</table>
MMIRS/Development Estimates

2 wfs 1 wk
an interface to megallan wfs server
unknown MMT interface

3 Planning GUI 4 wks
MDF generator

3 GMAP Guide Star interface 4 wks

2 guide server 4 wks
mmt instruments all use current guide server
needs upgrade for new camera type

Operations

<table>
<thead>
<tr>
<th>complexity</th>
<th>module</th>
<th>estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>cryostat operation</td>
<td>4 wk</td>
</tr>
<tr>
<td></td>
<td>startup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>heatup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cooldown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pump</td>
<td></td>
</tr>
</tbody>
</table>

2 observing gui 6 wks
observing sequence and exposure sequence already exist
for both imaging and spectroscopic instruments
Need to add support for multiple modes and MOS operation
with mask alignment, etc.

imaging
mos
longslit

1 obslogger/commenter 1 wks
done for megacam, hectospec and hectochelle
needs exposure collapser for swirc/mmirs

2 guidegui 4 wks
Add dual WFS/Guide support
Upgrade for new DS9 interface

Status Displays

<table>
<thead>
<tr>
<th>complexity</th>
<th>module</th>
<th>estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>dewar status</td>
<td>3 wk</td>
</tr>
<tr>
<td></td>
<td>similar to megacam topper display - more components</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>guide motor status</td>
<td>3 wk</td>
</tr>
<tr>
<td></td>
<td>similar to megacam topper display - more components</td>
<td></td>
</tr>
</tbody>
</table>

Software For Assembly and Test

<table>
<thead>
<tr>
<th>complexity</th>
<th>module</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>subassembly build up and ad hoc testing</td>
</tr>
<tr>
<td></td>
<td>During any week where there is sub assembly testing some level of software support will be required.</td>
</tr>
<tr>
<td>1</td>
<td>full up machanical system testing</td>
</tr>
<tr>
<td>1</td>
<td>performance testing</td>
</tr>
<tr>
<td>Release 1</td>
<td>Test Dewar Support</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>MMIRS/</td>
<td></td>
</tr>
<tr>
<td>Release 1</td>
<td></td>
</tr>
<tr>
<td>Science Camera Server 1</td>
<td></td>
</tr>
<tr>
<td>Detector Server only</td>
<td></td>
</tr>
<tr>
<td>Thermal Vac Server 1</td>
<td></td>
</tr>
<tr>
<td>Cam/Mos Heater (Omega)</td>
<td></td>
</tr>
<tr>
<td>AutoFill Control (Omega)</td>
<td></td>
</tr>
<tr>
<td>Cam/Mos Temp Monitor (Lakeshore)</td>
<td></td>
</tr>
<tr>
<td>FP Temp Control (Lakeshore)</td>
<td></td>
</tr>
<tr>
<td>Release 2</td>
<td>Motor Components</td>
</tr>
<tr>
<td>MMIRS/</td>
<td></td>
</tr>
<tr>
<td>Release 2</td>
<td></td>
</tr>
<tr>
<td>Engineering GUI</td>
<td></td>
</tr>
<tr>
<td>Motion Control Server 1</td>
<td></td>
</tr>
<tr>
<td>MOS Motors</td>
<td></td>
</tr>
<tr>
<td>WFS/Guide Motors</td>
<td></td>
</tr>
<tr>
<td>WFS/Guider Camera Server</td>
<td></td>
</tr>
<tr>
<td>Thermal Vac Server 2</td>
<td></td>
</tr>
<tr>
<td>Phytron Stepper Amp</td>
<td></td>
</tr>
<tr>
<td>Vac Gauge (Pfeiffer)</td>
<td></td>
</tr>
<tr>
<td>Release 3</td>
<td>Cryostat Motor Control</td>
</tr>
<tr>
<td>MMIRS/</td>
<td></td>
</tr>
<tr>
<td>Release 3</td>
<td></td>
</tr>
<tr>
<td>Motion Control Server 2</td>
<td></td>
</tr>
<tr>
<td>High Level Functions</td>
<td></td>
</tr>
<tr>
<td>Rack Monitor</td>
<td></td>
</tr>
<tr>
<td>Barcode Scanner</td>
<td></td>
</tr>
<tr>
<td>Power Control Server</td>
<td></td>
</tr>
<tr>
<td>Release 4</td>
<td>Integration</td>
</tr>
<tr>
<td>MMIRS/</td>
<td></td>
</tr>
<tr>
<td>Release 4</td>
<td></td>
</tr>
<tr>
<td>Integrated Science Camera Server</td>
<td></td>
</tr>
<tr>
<td>with instrument control</td>
<td></td>
</tr>
<tr>
<td>and telescope status</td>
<td></td>
</tr>
<tr>
<td>Observers GUI</td>
<td></td>
</tr>
</tbody>
</table>
with spectral and imaging modes

<table>
<thead>
<tr>
<th>Software</th>
<th>Telescope</th>
<th>Release Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryostat Operations GU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>including Interlock connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guide Server and GuideGUI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning GUI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSTARS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Release 5: Telescope 7/06

Planning GUI

GSTARS

Release 6: 2nd Telescope 12/06
Section X.

Miscellaneous

1. Observatory Interface
 a. MMIRS Observatory Interface
 b. MMT Telescope Bearing Moment
 c. Magellan Telescope Bearing Moment
2. Vacuum System
3. Temperature Sensing
4. Gate Valve Interlock
100 Space Requirements

The MMT is the limiting envelope for the MMIRS instrument. Figures 1 and 2 describe the MMT instrument volume and rotator envelope and how well MMIRS fits within it. MMIRS will have 33.6 inches clearance with the elevation axis support weldments and 4.1 inches clearance with the instrument lift’s floor channels. A possible encroachment on the MMT envelope as defined in MMTO-TM #00-1 is shown in Figure 1. We have contacted MMTO personnel to investigate if the defined envelope could be changed to accept MMIRS and are awaiting their investigation. The electronics boxes will need to be modified should the presently defined envelope need to be maintained. Figure 2, describes the allowable swing arc and MMIRS compliance with it. MMIRS fits well within this envelope. The Magellan envelope is vastly larger in all dimensions and therefore no interference is expected.

Figure 1: MMIRS space envelope at the MMT.
110 Requirements from the F&P
The following sections address particular space and accessibility requirements from the F&P.

111 Electronic enclosures
Section 331 of the F&P specifies that the electronics enclosures be included in the space envelope evaluation. This has been done and is shown in Figures 1 & 2 above.

112 Access to Liquid Nitrogen ports
Section 332 of the F&P specifies that the LN2 ports shall be readily accessible. This is the case at both telescopes; however a small platform will be required to reach the MOS fill port at Magellan due to the instrument’s height above the floor.

112 Electrical connections
Section 333 of the F&P specifies that all electrical connections to external equipment be accessible and that they may be disconnected without removal of the instrument from the CIR. This requirement is met by this design.

Figure 2: MMIRS clearance at the MMT.
200 Mass and Center of Gravity Requirements

210 MMT
The MMIRS-MMT Center of Gravity (CG) location with respect to the instrument mounting surface and the telescope’s central axis is listed below. These calculations are with respect to the telescope’s axis definitions and all dimensions are in inches:

\[
\begin{align*}
X-X &= -0.127 \\
Y-Y &= 0.63 \\
Z-Z &= 28.728
\end{align*}
\]

Therefore the interface specifications (TM#00-1) and compliances are:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Requirement</th>
<th>MMIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantilever Moment Specification (in-lbs)</td>
<td>150,000</td>
<td>93,180</td>
</tr>
<tr>
<td>Rotational imbalance Specification (in-lbs)</td>
<td>12,000</td>
<td>2,040</td>
</tr>
<tr>
<td>Mass Specification (lbs)</td>
<td>4,400</td>
<td>3243.7</td>
</tr>
</tbody>
</table>

The calculations for the CG and resultant moments are shown in attachment: “MMT Bearing Moment Calculations”

220 Magellan
The MMIRS-Magellan CG location with respect to the instrument rotator surface and the telescope’s central axis is:

\[
\begin{align*}
X-X &= -0.092 \\
Y-Y &= 0.457 \\
Z-Z &= 26.632
\end{align*}
\]

The interface specifications (03SE004) and compliances are:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Requirement</th>
<th>MMIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantilever Moment Specification (in-lbs)</td>
<td>150,000</td>
<td>119,076</td>
</tr>
<tr>
<td>Rotational imbalance Specification (in-lbs)</td>
<td>12,000</td>
<td>2,040</td>
</tr>
<tr>
<td>Mass Specification (lbs)</td>
<td>5,000</td>
<td>4,471</td>
</tr>
</tbody>
</table>

These calculations included the SAO supplied CIR with the origin at the telescope-bearing mounting surface.

The calculations for the CG and resultant moments are shown in attachment: “Magellan Telescope Bearing Moment Calculations”

300 Telescope mounting truss
The telescope mounting truss is a welded tubular truss made from A-36 steel in order to match the properties of the t MMT and Magellan CIR. It has a circular base ring for CIR attachment with a raised outer diameter to provide axial and radial stiffness. The truss mounts to the bulkhead between the MMIRS MOS and Camera Sections. The CIR mounting surface and the Cryostat’s mounting surfaces will be final machined parallel to each other to within 0.003 inches. This is so that the Lyot stop can be properly positioned
during assembly and will not require further adjustment required at the telescope. The truss has eight 4-inch diameter by ½-inch wall thickness steel tubes welded to the base ring at the midpoints between the ring’s CIR mounting holes. Similarly, at the Cryostat’s interface, the tubes are welded to the ring segments. These segments are bolted to the bulkhead. Gussets are used at each tube end to stiffen the bolted interfaces. Gussets are also used between tubes to limit tube bending. The truss tubes are arranged to provide easy access to the MOS mask exchange panel and clearance around the Guider/WFS systems.

The base ring also provides four (4) raised platforms. These platforms are used to mount the two electronic racks and provide a mounting interface to the Magellan and MMT installation carts. These platforms are concentric with the base ring and have a U-shaped cross-section. The platforms have mounting holes for the electronics racks’ mounting trusses and to secure the MMIRS to the installation carts. Some CIR mounting holes are covered by these platforms; however large holes are provided to allow the bolts to be installed.

The truss design calculations are covered in the structural section.

Figure 3: Instrument mounting truss.
List the center of gravity for all components and their respective weights

\[\text{CG}_{L1} := \begin{pmatrix} 0 \\ -5.17 \text{ in} \\ 19 \end{pmatrix} \quad \text{W}_{L1} := 90.4 \text{ lbf} \quad \text{Center of Gravity and Weight of MOS LN}_2 \]

\[\text{CG}_{L2} := \begin{pmatrix} 0 \\ -11.625 \text{ in} \\ 42.804 \end{pmatrix} \quad \text{W}_{L2} := 141.6 \text{ lbf} \quad \text{Center of Gravity and Weight of Camera LN}_2 \]
\[
\begin{align*}
\text{CG}_{\text{Assy}} & := \begin{pmatrix}
-0.18 \\
-0.49 \\
21.9
\end{pmatrix} \quad \text{W}_{\text{Assy}} := 2289.7 \text{ lbf} \quad \text{Center of Gravity for Instrument Assembly} \\
\text{CG}_{\text{Rack1}} & := \begin{pmatrix}
0 \\
40 \\
48.84
\end{pmatrix} \quad \text{W}_{\text{Rack1}} := 427 \text{ lbf} \quad \text{Center of Gravity for Electronics Rack #1} \\
\text{CG}_{\text{Rack2}} & := \begin{pmatrix}
0 \\
-40 \\
48.84
\end{pmatrix} \quad \text{W}_{\text{Rack2}} := 295 \text{ lbf} \quad \text{Center of Gravity for Electronics Rack #2}
\end{align*}
\]

Vectorize weights and CG for each axis

\[
W := \begin{pmatrix}
\text{W}_{\text{Assy}} \\
\text{W}_{\text{Rack1}} \\
\text{W}_{\text{Rack2}} \\
\text{W}_{L1} \\
\text{W}_{L2}
\end{pmatrix}
\]

\[
X := \begin{pmatrix}
\text{CG}_{\text{Assy}}_1 \\
\text{CG}_{\text{Rack1}}_1 \\
\text{CG}_{\text{Rack1}}_1 \\
\text{CG}_{L1_1} \\
\text{CG}_{L2_1}
\end{pmatrix}
\]

\[
Y := \begin{pmatrix}
\text{CG}_{\text{Assy}}_2 \\
\text{CG}_{\text{Rack1}}_2 \\
\text{CG}_{\text{Rack2}}_2 \\
\text{CG}_{L1_2} \\
\text{CG}_{L2_2}
\end{pmatrix}
\]
\[
Z := \begin{bmatrix}
\text{CG}_{\text{Assy}3} \\
\text{CG}_{\text{Rack1}3} \\
\text{CG}_{\text{Rack2}3} \\
\text{CG}_{L13} \\
\text{CG}_{L23}
\end{bmatrix}
\]

Find composite CG and weight for all components

\[
i := 1 \ldots 5
\]

\[
\text{CG}_{\text{total}} := \begin{bmatrix}
\sum_i \left(X_i \cdot W_i \right) \\
\sum_i W_i \\
\sum_i \left(Y_i \cdot W_i \right) \\
\sum_i W_i \\
\sum_i \left(Z_i \cdot W_i \right) \\
\sum_i W_i
\end{bmatrix}
\]

\[
\text{CG}_{\text{total}} = \begin{bmatrix}
-0.127 \\
0.63 \\
28.728
\end{bmatrix} \text{ in}
\]

Composite CG for assembly liquid nitrogen and electronics racks
\[W_{\text{total}} := \sum W \]

\[W_{\text{total}} = 3243.7 \text{ lbf} \]

Total weight supported by telescope bearing

Solve for the moment about the point at (0,0,0)

\[
\text{Weight} := \begin{bmatrix}
-W_{\text{total}} \\
0 \\
0
\end{bmatrix}
\]

Gravity applied in the -X direction is worst case. (Note: Picture above shows gravity in the -Y direction just for illustrative purposes)

\[M := CG_{\text{total}} \times \text{Weight} \]

\[M = \begin{bmatrix}
0 \\
-7765 \text{ ft\cdotlbf} \\
170 \text{ ft\cdotlbf}
\end{bmatrix} \]

Moment Vector due to the weight

\[M_y := M_2 \]

\[M_z := M_3 \]

\[M_y = -7765 \text{ ft\cdotlbf} \]

Magnitude of the moment about the Y-Axis

\[M_z = 170 \text{ ft\cdotlbf} \]

Magnitude of the imbalance moment about the Z-Axis
List the center of gravity for all components and their respective weights

\[
\begin{align*}
\text{Center of Gravity and Weight of MOS LN}_2 \\
\text{Center of Gravity and Weight of Camera LN}_2
\end{align*}
\]

\[CG_{L1} := \begin{pmatrix} 0 \\ -5.17 \text{ in} \\ 26.781 \end{pmatrix} \quad W_{L1} := 90.4 \text{ lbf} \]

\[CG_{L2} := \begin{pmatrix} 0 \\ -11.625 \text{ in} \\ 50.585 \end{pmatrix} \quad W_{L2} := 141.6 \text{ lbf} \]
Vectorize weights and CG for each axis

\[
\begin{align*}
\mathbf{W} &:= \begin{pmatrix} \mathbf{W}_{\text{Assy}} & \mathbf{W}_{\text{Rack1}} & \mathbf{W}_{\text{Rack2}} & \mathbf{W}_{\text{L1}} & \mathbf{W}_{\text{L2}} & \mathbf{W}_{\text{CIR}} \end{pmatrix} \\
\mathbf{X} &:= \begin{pmatrix} \mathbf{CG}_{\text{Assy}1} & \mathbf{CG}_{\text{Rack11}} & \mathbf{CG}_{\text{Rack12}} & \mathbf{CG}_{\text{L11}} & \mathbf{CG}_{\text{L21}} & \mathbf{CG}_{\text{CIR}1} \end{pmatrix} \\
\mathbf{Y} &:= \begin{pmatrix} \mathbf{CG}_{\text{Assy}2} & \mathbf{CG}_{\text{Rack12}} & \mathbf{CG}_{\text{Rack22}} & \mathbf{CG}_{\text{L12}} & \mathbf{CG}_{\text{L22}} & \mathbf{CG}_{\text{CIR}2} \end{pmatrix} \\
\mathbf{Z} &:= \begin{pmatrix} \mathbf{CG}_{\text{Assy}3} & \mathbf{CG}_{\text{Rack13}} & \mathbf{CG}_{\text{Rack23}} & \mathbf{CG}_{\text{L13}} & \mathbf{CG}_{\text{L23}} & \mathbf{CG}_{\text{CIR}3} \end{pmatrix}
\end{align*}
\]

Center of Gravity and Weight for Instrument Assembly

\[
\mathbf{CG}_{\text{Assy}} := \begin{pmatrix} -0.18 \\ -0.49 \\ 29.68 \end{pmatrix}
\]

Center of Gravity and Weight for Electronics Rack #1

\[
\mathbf{CG}_{\text{Rack1}} := \begin{pmatrix} 0 \\ 40 \\ 51.48 \end{pmatrix}
\]

Center of Gravity and Weight for Electronics Rack #2

\[
\mathbf{CG}_{\text{Rack2}} := \begin{pmatrix} 0 \\ -40 \\ 51.48 \end{pmatrix}
\]

Center of Gravity and Weight for Telescope CIR Adapter

\[
\mathbf{CG}_{\text{CIR}} := \begin{pmatrix} 0 \\ 0 \\ 3.558 \end{pmatrix}
\]

\[
\mathbf{W}_{\text{Assy}} := 2289.7 \text{ lbf}
\]

\[
\mathbf{W}_{\text{Rack1}} := 427 \text{ lbf}
\]

\[
\mathbf{W}_{\text{Rack2}} := 295 \text{ lbf}
\]

\[
\mathbf{W}_{\text{CIR}} := 1227.5 \text{ lbf}
\]
Find composite CG and weight for all components

\[i := 1 \ldots 6 \]

\[
\text{CG}_{\text{total}} := \left[\frac{\sum_i (X_i \cdot W_i)}{\left(\sum_i W_i \right)} \right] \left[\frac{\sum_i (Y_i \cdot W_i)}{\left(\sum_i W_i \right)} \right] \left[\frac{\sum_i (Z_i \cdot W_i)}{\left(\sum_i W_i \right)} \right]
\]

\[
\text{CG}_{\text{total}} = \begin{bmatrix} -0.092 \\ 0.457 \\ 26.632 \end{bmatrix} \text{ in}
\]

Composite CG for assembly liquid nitrogen and electronics racks

\[
W_{\text{total}} := \sum W
\]

\[
W_{\text{total}} = 4471.2 \text{ lbf}
\]

Total weight supported by telescope bearing
Solve for the moment about the point at (0,0,0)

\[
\text{Weight} := \begin{pmatrix}
-W_{\text{total}} \\
0 \\
0
\end{pmatrix}
\]

Gravity applied in the -X direction is worst case. (Note: Picture above shows gravity in the -Y direction just for illustrative purposes)

\[
M := \text{CG}_{\text{total}} \times \text{Weight}
\]

\[
M = \begin{pmatrix}
0 \\
-9923 \text{ ft-lbf} \\
170
\end{pmatrix}
\]

Moment Vector due to the weight

\[
M_y := M_2
\]

\[
M_z := M_3
\]

\[
M_y = -9923 \text{ ft-lbf}
\]

Magnitude of the moment about the Y-Axis

\[
M_z = 170 \text{ ft-lbf}
\]

Magnitude of the imbalance moment about the Z-Axis
MMIRS Vacuum System
G. Nystrom, 03 May 2005

100 System Description

The MMIRS vacuum system components and arrangement are shown in Figure 1. It is composed of a Varian Turbo pump, model V301 with a Varian Tri-Scroll 600 roughing pump. Vacuum pressure recording is accomplished using a Pfeiffer vacuum gauge controller, Model DPG 109. It controls and provides pressure measurement from two Pfeiffer model HPT-100 and a PPT-100 sensors. The HPT-100 is used to measure the MOS and Camera chambers from one Atmosphere down to 1×10^{-9} Torr. The PPT-100 sensor is used to measure chamber pressure during initial evacuation and the Turbo pumps fore-line pressure when operating. The PPT-100 has a range from one Atmosphere down to 1×10^{-4} Torr.

The turbo pump is permanently attached to the MOS section. The exhaust port of the turbo pump connects through V2 to the roughing pump and the backfill system.

Evacuation of the camera section is performed by opening the isolation gate valve (V1). During initial testing, when the two sections may not be mated, the camera section can be pumped through valve V6.

![Figure 1 – The MMIRS vacuum system, from SAO drawing C-MMIRS 102](image-url)
110 Isolation Gate Valve

A custom gate valve assembly has been fabricated by VAT, a respected manufacturer of vacuum equipment. The valve is operated by an SAO designed drive system. This valve, designated V1, requires a safety interlock protocol, which is outlined in a memo titled “MMIRS Gatevalve Interlock”. The implementation of the interlock is described in the Electonics section.

120 Backfill System

A manually controlled backfill system is planned. It is shown on drawing C-MMIRS-102. The backfill system connects to the MOS chamber via V2 an electrically operated solenoid valve. To prevent backfilling of the MOS or Camera sections when they are cold, V2 is connected to the Interlock System.

The backfill system uses a standard Dry Nitrogen bottle outfitted with a regulator/valve. Also an over-pressure valve in placed between the bottle and MOS chamber to prevent its over-pressurization, which could lead to possible damage to internal components. A valve also is placed in front of the roughing pump to prevent flow in that direction. A pressure gauge is also in the backfill line to allow determination as to when the MOS chamber is at atmospheric pressure.

200 Pump Out Times

The MOS and Camera chambers have evacuation volumes of 192 and 617 liters respectively. The expected evacuation pump down curves are attached as Figures 2 and 3. These curves are for a clean instrument after initial out-gassing. The properties used in the evaluation are: O-ring leakage, surface volumes and materials, connector leak rates and valve (V1& V2) conductances.

The MOS only evacuation time to 1×10^{-4} Torr is less than 30 minutes, which is within specification as described in section 373 and shown in figure 2 below. The MOS+Camera evacuation time to 1×10^{-4} Torr is specified as < 4 hours, Figure 3 below shows that this specification is achieved.
Center for Astrophysics
MOS Only
V301 w/ISO100 Flange

Vacuum System Pumpdown

<table>
<thead>
<tr>
<th>Input Results:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber Volume</td>
<td>192</td>
</tr>
<tr>
<td>Chamber Surface Area</td>
<td>4.20E+04</td>
</tr>
<tr>
<td>Cross Over Pressure</td>
<td>100</td>
</tr>
<tr>
<td>Diameter of Hi-Vac Port</td>
<td>10.00</td>
</tr>
<tr>
<td>Conductance Limiters</td>
<td>Spool Piece</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effective Pumping Speeds:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Net Pumping Speed at Chamber</td>
<td>144</td>
</tr>
<tr>
<td>Water Net Pumping Speed at Chamber</td>
<td>156</td>
</tr>
</tbody>
</table>

Figure 2 -- MOS Pumpdown Curve
Figure 3. MOS+Camera Pumpdown Curve

Input Results:
- Chamber Volume: 809 liters
- Chamber Surface Area: 1.05×10^5 sq cm
- Cross Over Pressure: 100 microns
- Diameter of Hi-Vac Port: 10.00 cm
- Conductance Limiters: Spool Piece

Effective Pumping Speeds:
- Air Net Pumping Speed at Chamber: 144 l/sec
- Water Net Pumping Speed at Chamber: 156 l/sec
300 Gettering

Vacuum maintenance during cold operation is required because O-ring seals are intrinsically leaky due to diffusion of nitrogen through rubber. MMIRS will have charcoal adsorption cartridges placed in each chamber and intimately attached to a cold surface. The charcoal will be contained using sintered metal filters. The Ohio State Astronomy MATHCAD document (Atwood-O’Brien) was used to calculate the effectiveness of the Charcoal pump. The camera section has a predicted pressure rise to 1.7×10^{-5} Torr after 180 days of cold operation using the Charcoal pump. A simple flow meter measuring LN2 boil-off can be used to evaluate the change in vacuum isolation.

The Camera section also has a warm Zeolite canister to pump water during initial pumpout phases. The Zeolite canister can be recharged via bake-out while in place using its isolation valves (V6 and V7).
100 Overview

The MMIRS instrument will require a number of temperature sensors and heaters in order to monitor and maintain the optical elements and detector at their required temperatures, insure rapid cycling of the MOS Section, for diagnostics purposes during instrument assembly, and to monitor the long-term health of the instrument. This document describes the expected number and location of the temperature sensors and provides some guidelines on the temperature controllers.

The estimated temperature sensor requirements are:

- MOS Section: 2
- Camera Section: 6
- Electronics Racks: 5
- Engineering: 17

The total heater requirements are:

- High Power: 2
- Low Power: 1

200 Temperature Sensing Requirements

The temperature sensing requirements have been divided into four categories: MOS Section, Camera Section, Electronics Racks, and Engineering. The first three sections correspond to the recommended sensors for regular operation. The fourth corresponds to the expected additional temperature sensors that will be required during initial instrument assembly and checkout, but will not be monitored during regular operation. Nevertheless, all of these sensors should be permanently installed and cabled so that they may be connected to the temperature monitors in the electronics racks if necessary, and without opening the instrument. This will likely require a simple breakout box or jumper box installed in one of the electronics racks.

Note that temperature sensors in the electronics racks shall likely use a different temperature monitor than those inside the MOS and Camera Sections (see Section 230 below). A LakeShore Temperature Monitor is recommended for the temperature sensors inside the MOS and Camera Sections.

210 MOS Section

The following areas should have a temperature sensor:

- T1: Wheel enclosure: attached to the outer surface
- T2: Dewar: on side opposite bulkhead and facing wheels
The subtotal for the MOS Section is two temperature sensors. The locations of these sensors are indicated in Figure 1.

220 Camera Section

The following areas should have a temperature sensor:

- T3: Lens 3: attached to the lens mount, furthest from dewar
- T4: Vee block 1: attached to the inside of the radiation shield at top, center
- T5: Detector mount: opposite the detector and near top
- T6: Detector mount: on detector fan-out board
- T7: Dewar back: middle of side opposite bulkhead plate, near optical bench
- T8: Radiation shield: halfway along length and opposite the dewar

The subtotal for the Camera Section is 8 temperature sensors. The locations of these sensors are indicated in Figure 1. Temperature sensors T5 or T7 shall be connected in a feedback loop with the fill valve and heater to control the rate of change of temperature.

Figure 1: Locations of the temperature sensors for regular operation.
230 Electronics Racks
Temperature sensors will be necessary in each rack and up to one particularly heat-sensitive electronics component per rack may also be monitored individually. These sensors do not need to be part of the temperature monitors for the sensors inside the instrument. One option for these sensors is what we used in the PANIC instrument: the Omega CNi16D controller with embedded Ethernet. These units are small and cheap.

The subtotal for the electronics racks is expected to be five temperature sensors.

240 Engineering Sensors
We expect to require the following, additional sensors during the integration and testing phase.

MOS section:
- E1: Lens 2: Attached to the lens mount material
- E2: Pickoff mirror: One of the two mirrors only
- E3: L2 baffle: Attached to the outside surface and facing the mask exchange port
- E4: GWS baffle top: Outside surface facing top dome
- E5: Slit mask wheel: Rim of wheel (for static test!)

Camera section:
- E6: Lens 5: Attached to the lens mount
- E7: Lens 8: Attached to the lens mount
- E8: Lens 9: Attached to the lens mount
- E9: Lens 14: Attached to the lens mount
- E10: Vee block 2: Attached to the inside of the radiation shield at top, center
- E11: Dewar front: Middle of side facing bulkhead plate, near optical bench
- E12: Lens 9 dummy: Center of a dummy lens in the mount for lens 9
- E13: Lens 10 dummy: Center of a dummy lens in the mount for lens 9
- E14: Detector dummy: Center of the ZIF socket
- E15: Electronics radiation shield: Center of radiation shield behind detector
- E16: Wheel radiation shield: Top of radiation shield over filter/grism wheels
- E17: Grism wheel: Rim of wheel (for static test!)

Additional temperature sensors may exist in the cryogenic motors. The present layout anticipates that they will not be used.

The subtotal for engineering sensors is expected to be 17 temperature sensors. The locations of these sensors are indicated in Figure 2. Note that the MOS section baffles are not shown, and therefore E3 and E4 have been placed at their approximate spatial location.
300 Heating Requirements

MMIRS will require two high power heaters for thermally cycling the MOS and Camera dewars and one low power heater for potential use in controlling the detector cooldown rate and insuring its temperature stability.

310 High Power Heaters

Heating elements will be required for thermal cycling of the two dewars. The MOS Dewar heater must be of sufficiently high power so that the time to cycle the MOS Dewar meets the specification in the F&PR. Both Ohio State and Florida use kapton sheet heaters from MINCO. They use the Omega C8502 temperature controller. The locations for these heaters should be:

- MOS Dewar: Attached to cylindrical wall
- Camera Dewar: Attached to rounded side facing outer radiation shield

320 Low Power Heaters

The following heating elements will be required:

- Detector mount: located on the heater board

This heater and controller must maintain high temperature stability at the detector.
MMIRS Valve and Heater Interlock Conditions

Draft, Paul Martini December 27, 2004
Released, Brian McLeod April 4, 2005

100 Overview

MMIRS contains two electrically controlled valves. A gate valve (V1) is located between the MOS and Camera sections of the MMIRS instrument and provides a vacuum seal when the MOS section is opened for slit mask exchange. This gate valve is a critical component as the instrument would be seriously damaged if the gate valve opens when the MOS section is at atmospheric pressure and the Camera section is under vacuum and at cryogenic temperatures. A second valve (V2) is located outside the turbo pump in the MOS section, and allows the instrument to be backfilled with dry nitrogen. This valve must also be opened when pumping the dewar, as it is located between the turbo and the roughing pump. This document specifies the conditions under which these two valves can be opened.

200 Standard Procedures

The following standard procedures need to be permitted by the interlock system, while preventing the cold Camera dewar from being exposed to atmospheric pressure or outgassing from a warm MOS dewar.

210 Slit Mask Exchange

The slit mask exchange process begins with both dewars cold and under vacuum. First the gate valve is closed, then the MOS heater is turned on. Once the MOS section reaches ambient temperature, the backfill valve is opened and the MOS section is vented with dry nitrogen. At this point the backfill valve (V2) can be closed while the masks are exchanged. Once the masks are exchanged, V2 must be reopened and the MOS chamber pumped out. When the MOS chamber reaches 10^{-5} Torr, V2 is closed, the pump is turned off, and it will be filled with LN2. Once the MOS temperature goes below 200K the gate valve may be reopened. The slit mask exchange procedure is described in more detail in the document “MMIRS Slit Mask Exchange Procedure.”

220 Camera Section Maintenance

To perform maintenance on the Camera Section requires warming both the MOS and Camera sections. If the MOS section is at atmospheric pressure, it must be pumped down to equalize the pressure in the two sections. The gate valve is opened then V2 is opened and both sections are vented with dry nitrogen through V2.
After maintenance, the gate valve is opened if necessary. V2 is opened and pumping begins. When both sections reach 10^{-5} Torr, the gate valve is closed and each section is filled. Once both sections are cold, the gate valve may be reopened. The warmup procedure is described in more detail in the document “MMIRS Warmup Cooldown Procedure.”

300 Required Logic

310 Gate Valve (V1)

The required logical conditions to open the gate valve (V1) are:

- $|P_{MOS} - P_{Cam}| < 10$ Torr.
- AND
- $(T_{MOS} > 0C \text{ AND } T_{Cam} > 0C)$ OR $(T_{MOS} < 0C \text{ AND } T_{Cam} < 0C)$

These conditions will only avoid catastrophic failure, in particular damage to the optical elements and the detector. To insure the long-term performance of the instrument, however, there are additional recommendations specified in section 360 below.

No restrictions need to be placed on closing the gate valve.

320 Backfill/pumping Valve (V2)

The required logic to open the vent/pump valve (V2) is

- $(V1 \text{ Open}) \text{ AND } (T_{MOS} \geq T_{amb}) \text{ AND } (T_{Cam} \geq T_{amb})$
- OR
- $(V1 \text{ Closed}) \text{ AND } (T_{MOS} \geq T_{amb})$

330 MOS Heater

The MOS heater may only be turned on when V1 is Closed.

340 Camera Heater

The Camera heater may only be turned on when V1 is Closed.

350 Required components
The MOS and Camera sections each require one pressure sensor and one temperature sensor. An air temperature sensor is required and must be located outside the electronics enclosure. The MOS temperature sensor shall be placed in a location which is the last to warm up during the heating process. This is expected to be on the cold baffle. The Camera section sensor shall also be placed in a location which is the last to warm up. This is expected to be near Lens 3. These locations will be confirmed during initial tests.

360 Sensor Failures

The interlock system must be failsafe. In the event of a sensor failure, V1 and V2 must not be enabled. However, it may be necessary to override the interlock to allow replacement of the failed sensor.

370 Additional recommendations:

A dry air purge should always be used to vent the dewar. This minimizes the risk of condensation in the unexpected event that the interior temperature is less than the ambient dew point. It also minimizes the adsorption of water onto aluminum surfaces. After the dry air purge, the instrument should be allowed to sit X minutes to allow a final temperature equilibration. This time period will be determined during initial testing.

In the case of slit mask exchange, the slit and dekker wheels should be placed in the dark position before opening the gate valve. This insures that Lens 3 will be exposed to a relatively cold surface once the gate valve is opened, rather than the significantly higher heat load of the entrance window. This is not a lockout condition, but should be part of the slit mask exchange procedure.
Section XI.

Operations and Maintenance

1. Observing Overview
2. Slit Mask Exchange Procedure
3. Warm Up and Cool Down Procedure
4. Maintenance and Serviceability
5. Shipping and Installation Plans
6. Assembly and Test Plan
MMIRS Observing Overview

Paul Martini
April 4, 2005

100 Overview

The MMIRS instrument has three observational modes: wide-field (7’x7’) imaging, longslit spectroscopy (7’ slit length) and multislit spectroscopy over most (4’x7’ useable, 2’x7’ full spectral range) of the imaging field of view. This document describes representative observing sequences for each of these modes, including target acquisition, setup of the guider and wavefront sensor, representative observation sequences, calibration data, required mechanisms for each mode, and estimates of how frequently the mechanisms will be moved.

200 Imaging

MMIRS can obtain broadband YJHK images with a 7’x7’ field of view. This is the simplest observing mode and requires the fewest mechanisms and mechanism changes. The science goal of the observing scenario discussed here is to detect extremely faint objects in a field with low surface density.

210 Instrument Configuration

The only mechanism that may change during imaging observations is the filter wheel. The remaining mechanisms will be set to the following positions and not changed:

- Slit Wheel: Imaging Aperture
- Dekker Wheel: Imaging Aperture
- Grism Wheel: Imaging Aperture

220 Slew Telescope to Target

The telescope will be slewed to the target coordinates and then a short exposure will be obtained to verify that the telescope is pointed at the correct field.

In the case of a field with few or no bright objects, a pair of dithered, short exposures may be differenced to detect sources fainter than the sky background. In this instance, a short exposure will be obtained, the telescope offset on order 10”, another short exposure with the same integration time will be obtained, and then one exposure will be subtracted from the other. This process is used to remove the bright sky background, which varies substantially from pixel-to-pixel (relative to typical faint targets) due to pixel-scale sensitivity variations in the detector.

230 Setup GWFS

Separate stars for direct guiding and the wavefront sensor now need to be acquired. From the known position of the telescope and existing catalogs of suitable guide stars the coordinates of all candidate stars within the field of view of the guiders are known. One
star will then be selected for each guide camera and the X-Y stages will be moved to place these stars in the centers of their respective detectors.

Once the star for direct guiding is approximately centered on its detector, the guider software will be activated and used to maintain the star at the same position on the guide camera by sending offset commands to the telescope.

The wavefront sensor star will also be centered on its detector using the X-Y stages. In particular, it must be located at the correct position for the WFS aperture. Once the star is correctly positioned, the mirrors and Shack-Hartmann array will be moved into the beam and the WFS software activated.

240 Observations
To mitigate the effect of bright sky emission, bad pixels, and the intrapixel sensitivity of the detector array, imaging observation consist of many short to moderate length exposures (no more than several minutes) separated by small telescope offsets (dithers) of on order 10”, depending on the image quality on a given night and the characteristic size of the objects under study.

241 Exposure Time
The time between dithers will be on order several minutes, although the detector array may be read several times between dithers, depending on the sky and object flux. For example, if the total time between dithers is chosen to be three minutes (this number can depend on the sky conditions and filter), this time will be divided into several shorter exposures such that the total counts accumulated from the sky (or the brightest science targets) do not exceed the range in which the detector is linear. This sets the time \(T \) of an individual exposure. \(N \) exposures will be obtained so that the product \(T \times N \) equals the desired time between dithers.

Each time the telescope is offset or dithered, the guider and WFS X-Y stages have to be moved to exactly compensate for the telescope motion. Note that to maximize observing efficiency, the X-Y stages need to be quite exact so that no new guide star acquisition is necessary. This constraint is not particularly tight, however. The specification for the precision of the X-Y stages is driven instead by dithers in spectroscopic mode, as described below in section 350.

242 Dithers and Macros
Long exposures of very faint objects can require up to several hundred telescope dithers. The dither process will therefore be automated so that the observer can request a set number of dithers, all with the same offset size (although in different directions) and same exposure sequence at each step.

243 Change Filter, Repeat
Additional observations in other filters could then be obtained by changing the filter, calculating the time \(T \) of an individual exposure (because the sky brightness is different in each filter) and beginning a new dither sequence.
250 Calibration
The calibration data required for imaging are flat field exposures, standard star observations, and potentially dark exposures.

251 Flat Fields
Flat field exposures are used to remove the pixel-to-pixel sensitivity variations of the detector array. Flats are best obtained by observing the twilight sky as will likely provide the most uniform illumination of the detector. To obtain twilight flats, the instrument is configured as above for imaging and the desired filter is selected. At twilight, the telescope will then be slewed to a relatively blank field and a series of exposures will be obtained. The exposure times will be chosen to provide a relatively large number of counts, yet not exceed the linearity range of the detector. The best exposure time will change with time as the sky background darkens/brightens. The telescope will be dithered between these observations to eliminate faint stars when these data are combined. Note that the GWFS will not be used when flat fields are obtained.

252 Standard Stars
Standard stars will be observed in the same manner as the observations described in section 240, although the exposure times will be substantially less and the GWFS will not be necessary.

253 Darks
Dark frames are sometimes acquired to estimate and subtract, if necessary, any background due to the instrument itself. The detector dark current is likely to be completely negligible, although may contain some structure. Darks may not be necessary for MMIRS, although they are easily obtained if desired. To obtain darks, the instrument is configured with the Dekker wheel in the dark position. Exposures of the desired length can then be obtained.

260 Estimates of Mechanism Use
After the instrument is configured for imaging and the GWFS stars have been selected, the only mechanisms that will move are the filter wheel (if there are filter changes) and the guider X-Y stages. The filter wheel will likely move most often when the same field is being observed in multiple filters, such as for standard star observations, although a dither sequence will still require at least several minutes. More typically, the filter wheel will move on order once per hour. The GWFS X-Y stages will move most frequently during short, guided observations and this may correspond to as frequently as every 30 seconds (although in this case it may not be possible to close the loop with the wavefront sensor).

More typically, the telescope with be moved on order every few minutes. Finally, the slide to select the wavefront sensor will be used at the beginning and end of the observations of each field. Estimates for mechanism use in imaging mode are summarized in Table 1 below.
Table 1: Estimated Mechanism Use in Imaging Mode

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Most Frequent [min]</th>
<th>Typical [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Wheel</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>X-Y Guider</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>WFS Select</td>
<td>10</td>
<td>60</td>
</tr>
</tbody>
</table>

300 Long Slit Spectroscopy

MMIRS can obtain spectroscopy with a 7’ long slit. A range of slit widths are provided and all can be used with either the J, H, or K moderate-resolution grisms, and either of the J+H or H+K low-resolution grisms. The science goal of the observing scenario discussed here is to obtain a spectrum of a small (relative to the slit length), faint object.

310 Instrument Configuration

All of the mechanisms in MMIRS will be moved when the spectroscopic mode is used. The initial configuration, however, will be the same as above for imaging mode. Imaging mode will be used to confirm, as described above in section 220, that the telescope is pointing at the correct target. Once the target is ready for spectroscopic observations, the Slit wheel, Dekker wheel, grism wheel, and perhaps the filter wheel will need to move to switch from imaging to spectroscopic mode.

320 Slew Telescope to Target

The telescope will be slewed and the target verified exactly as described above in section 220 for imaging observations. A small offset should be used to crudely position the target near the center of the detector. The instrument may be rotated if a specific slit angle is desired for the science observations.

330 Setup GWFS

The setup is identical to that described in Section 230 above.

340 Position Target on Slit

Once the GWFS has been set up, sufficiently accurate and precision telescope motions should be possible to place the target on the slit in one or at most two iterations. The exact position of the slit image relative to the detector should already be known, so the relative position of the target and the slit center (in pixels) can be used to offset the target directly to the slit. Once the target is located at a pixel position corresponding the slit center the slit wheel and Dekker wheel will be moved to place the desired slit and the Dekker long slit aperture in the science beam. Now another exposure will be obtained to verify that the target is in fact centered on the slit. If the target is faint, two exposures may be necessary in a manner similar to that outlined above in section 220. However, in this case the offset should be parallel to the long axis of the slit. If the target does not appear to be perfectly centered on the slit, small additional offsets may be necessary. Once the target is centered on the slit, the grism wheel and perhaps the filter wheel will be moved to finish preparations for spectroscopic mode. The filter wheel will only need
to be changed if either the $J+H$ or $H+K$ grism will be used, as likely one of the broadband (JHK) filters will be used to position the target on the slit.

350 Observations
Once the instrument has been configured for the desired spectroscopic mode, the observations can begin. Often this will entail observations of the target at multiple positions along the slit. Bad pixels, fringing, and accurate sky subtraction are the main motivations for dithering the target along the slit.

310 Exposure Times
Typically the observations will be of relatively faint targets and therefore require up to hours of total exposure time. The length of individual exposures will depend on the sky subtraction algorithm and the brightness of the OH airglow lines. Assuming that a 2-D model of the sky can be computed for each observation, the main limitation on the length of an exposure will be when the OH airglow lines approach the nonlinear regime of the detector, at least at wavelengths where accurate sky subtraction is desired. If this occurs, modeling and subtracting the sky lines will be more difficult. This may occur in approximately ten minutes for the brightest lines and in practice will depend on the slit width.

320 Dithering along the Slit
As for imaging, the size of the dither step should be several times the characteristic size of the object and the X-Y stages of the GWFS will need to move to exactly compensate for the telescope offset. Note that because of the narrow width of the slits, the precision of the telescope and GWFS offsets are critical.

360 Calibration
The calibration data required for spectroscopy are a reasonably featureless hot star to correct for (variable) telluric absorption, a flux standard (which may be identical to the hot star), flat fields, wavelength calibrations, and images of the slits on the detector. Flat fields and wavelength calibration frames may be desired at the exact same telescope orientation as the observations.

361 Correction for Telluric Absorption
The atmosphere in the near-infrared region is riddled with absorption bands, primarily due to water. These bands are largely unresolved at the resolution(s) of MMIRS and they also vary in strength with time and position on the sky. To obtain the best telluric correction, a hot star should be observed once every half hour and as close to the object position as possible (within approximately 10 degrees and 0.1 in airmass). Note that in practice this is quite difficult to achieve, especially once the overhead associated with setting up spectroscopic observations is taken into account. Once selected, the observations of these standards are identical to the observations described above, although the exposure times are typically much shorter. Unlike in imaging mode, these calibration frames will likely require use at least the guider. The wavefront sensor is not likely to be needed.
362 Flux Standard
Flux standards are used to place spectroscopic observations on a relative or absolute flux scale. These observations are identical to those described above for the telluric correction, and in some cases one of the telluric correction stars may also serve as a flux standard. Unlike the telluric correction, only one flux standard is likely to be observed in a given night.

363 Flat Fields
As for imaging, spectroscopic flat field exposures are used to remove the pixel-to-pixel sensitivity variations of the detector array. However, unlike in imaging, the flat fields have several sources of pixel-to-pixel variation that arise on a range of scales on the detector. The main two are fringing in the detector itself (discussed in a separate document) and variations in the slit width. Properly correcting for fringing requires observations of a uniform illumination source with the same instrument orientation (to minimize differences in flexure) as the science observations. These observations will be obtained by placing the diffuser in the Dekker wheel and illuminating it with a quartz lamp. These observations should only require several minutes. The GWFS will not be used while the flatfields are obtained. There will also be a variation in the transmission of the slit itself due to variation in the slit width due to mechanical imperfections. This variation in transmission can be removed with the same flat field obtained for the fringing correction. Finally, there is a large-scale variation in the grism transmission itself (blaze function), although this can be removed with the flux standard observation.

364 Wavelength Calibrations
For all sufficiently long spectroscopic exposures (likely on order a minute or longer), the OH airglow lines themselves can be used for wavelength calibration. Short exposures, such as the telluric correction and flux calibration, will need to use observations of calibration lamps to calculate the dispersion solution. These lamp exposures will be obtained with the GWFS inactive and with the instrument at the same orientation as the observations to minimize the effect of flexure.

365 Slit Images
Observations during daylight of all of the spectroscopic slits that will be used during the night will be valuable to exactly predetermine where a given slit’s image falls on the detector.

370 Estimates of Mechanism Use
Spectroscopic mode heavily uses most of the mechanisms in MMIRS. A typical, conservative estimate of mechanism use is for a 30 minute observation of a faint target split into 3 dithered, ten minute exposures. This observation would start with the instrument in imaging mode, movement of the GWFS stages to acquire stars, and then the slit wheel, Dekker wheel, grism wheel, and filter wheels would be moved to change into spectroscopic mode. There are then on two telescope/GWFS offsets with ten minute separations. This observation would then be followed by a flatfield exposure (Dekker wheel motion, GWFS off). Observation of a telluric correction star provides an estimate
of heavy mechanisms usage. As above, the setup requires motion of all of the mechanisms, although the dithers are only on order ten seconds apart. While the guider will need to be active during these observations, the wavefront sensors will not. The estimates for mechanism use in spectroscopic mode are summarized in Table 2.

Table 2: Estimated Mechanism Use in Longslit Mode

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Most Frequent [min]</th>
<th>Typical [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slit Wheel</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Dekker Wheel</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Filter Wheel</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Grism Wheel</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>X-Y Guider</td>
<td>0.2</td>
<td>10</td>
</tr>
<tr>
<td>WFS Select</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

400 Multislit Spectroscopy

The multislit mode of MMIRS allows slit placement over a 4’x7’ field, although complete wavelength coverage can only be obtained for the central 2’x7’. This option is similar to the longslit mode described in section 300, except that the alignment process is more critical and thus may require additional iterations with the telescope/GWFS X-Y stages. The science goal of the observation discussed here is to obtain spectroscopy of many faint objects.

410 Instrument Configuration

The initial configuration for multislit spectroscopy is identical to the configuration described in section 310 for longslit spectroscopy.

420 Slew Telescope to Target

The telescope will be slewed and the target verified exactly as described above in section 220 for imaging observations. A small offset should be used to crudely position the target near the center of the detector. In addition, the instrument will need to be rotated to the position angle of the multislit mask.

430 Setup GWFS

This setup is identical to that described in Section 230 above.

440 Mask Alignment

Mask alignment is similar to the alignment of a single object on the longslit, although because rotation is critical as well this step will likely require one or two additional iterations.

441 Initial Offset and Rotation

The first iteration for mask alignment will require an image of the field and an image of the slit mask, where the later was presumably obtained during the day or in twilight. The slit mask will typically contain three to five alignment stars and software will be used to
measure the centers of the alignment boxes in the slitmask image and the centers of the
stars in an image of the field. These data will be used to calculate the position offset and
rotation necessary to place the alignment stars at the centers of the boxes and thereby the
objects in their slits. The GWFS X-Y stages will then move to compensate for the
telescope motions. Depending on the precision of the offsets and rotations, a second
iteration may be necessary to insure that the alignment stars are coincident with all of the
boxes. Once this has been confirmed, the slit mask and Dekker wheels will be moved into
position.

442 Final Mask Alignment
Now that the slit mask is in the optical path, a second observation of the field will be
obtained to determine that the alignment stars fall in their boxes and perform an
additional iteration with the telescope. This will be necessary for a number of reasons: the
mask image was obtained when the MOS temperature was still equilibrating, the slit
mask wheel repeatability is not perfect, and because the initial alignment offsets and
rotations were not of the necessary precision. The image just obtained through the slit
mask will now be used to determine the centers of the alignment boxes and the positions
of the stars in these boxes will be used to calculate new offsets and rotations. This step
should only require one iteration before spectroscopic observations can begin.

450 Observations
The grism (and perhaps filter) wheel will now be moved into place to begin spectroscopic
observations. The considerations for exposure time and dithering are similar to those
discussed above in section 350 for longslit mode. Dithering along the slits in a multislit
mask may provide to be quite challenging, and also would reduce the number of
individual slits in the mask, so it may be that a 2-D sky model will be generated instead.
If the observations are not dithered, then the GWFS X-Y stages do not need to be moved
and instead multiple exposures at the exact same telescope position will be obtained.

460 Calibrations
The calibrations required for multislit spectroscopy are identical to those described above
for longslit spectroscopy in section 360. Note that telluric and flux standard observations
can be obtained through one of the slits in the multislit mask to minimize the number of
modes that require calibration data.

470 Estimates of Mechanism Use
The estimates of mechanism use for longslit spectroscopy in Table 2 are also reasonable
estimates for multislit spectroscopy.
MMIRS Slit Mask Exchange Procedure

Paul Martini
April 25, 2005

Overview
The MMIRS instrument has slit masks cooled to cryogenic temperatures in a separate dewar (hereafter the MOS section) that is smaller than the main dewar (hereafter the Camera section). The MOS section is smaller and separate so that slit masks may be exchanged during daylight and with time to spare to obtain calibration data. The goal is for the slit mask exchange procedure to last no longer than eight hours. The mask exchange procedure involves warming up the MOS section, exposing it to atmospheric pressure, exchanging the slit masks, pumping it out, and cooling the slit masks back to cryogenic temperatures. This document describes the slit mask exchange procedure in detail. The current time estimate is eight hours.

Procedure
The entire exchange procedure is currently estimated to require eight hours, which does not include time for calibration exposures. If possible, the procedure should be shortened further to allow more time for calibration exposures and to give the observatory staff more leeway on exactly when they exchange slit masks. This procedure may either be performed exclusively by the observatory staff, or begun by the observer (or telescope operator) and completed by the daytime staff. It is expected that MMIRS will be mounted on the telescope for this procedure.

1 Close Gate Valve [0 minutes]
The gate valve will be closed through the instrument’s user interface. This operation may be performed by the observer, the telescope operator, or another member of the observatory staff. Once the gate valve is closed it shall be impossible to open the gate valve again unless the interlock conditions are met. These conditions are described in the document “MMIRS Valve and Heater Interlock Conditions.” The Dekkar wheel shall be placed in the dark position.

2 Activate MOS heaters [120 minutes]
The MOS heaters shall be activated by a button on the instrument’s user interface. This activation should require additional confirmation (see also the interlock conditions). The MOS heaters shall warm up the MOS section until they are at the ambient temperature. The MOS heaters shall turn off automatically when this temperature is reached. This shall be accomplished through the use of an autotuning temperature controller, which shall have a temperature sensor attached to the MOS LN2 vessel

Note: Activation of the MOS heaters will likely be the last part of this procedure performed by either the observer or the telescope operator. In principle the MOS heaters may be activated as soon as the gate valve is closed
3 Introduce dry air to MOS [30 minutes]
It is important that no condensation occur within the MOS section, which would happen if the MOS is exposed to humid air when some of the interior is still colder than the dew point. Lens 2 is particularly crucial in this respect. Introduction of dry air will facilitate rapid equilibration of the interior temperatures through conductive heating. This step requires the availability of a dry air supply at both telescopes. The dry air feed shall be connected to the vacuum pumping port of the MOS section.

4 Disable Remote MOS Mechanism Control [0 minutes]
Remote control of the Slit and Dekker wheels shall be disabled by flipping a toggle switch next to the MOS access panel. Flipping this switch shall also activate a neighboring “wheel advance” button to facilitate slit mask exchange (see #6 below) and reset the software table of mask IDs and slit positions.

5 Open MOS access panel [10 minutes]
The MOS access panel shall be opened by removing the bolts around the MOS access panel. A bolt driver of the proper size shall be attached by a cable to the instrument electronics racks (so it is not lost) and have a small holster for storage in the electronics racks (similar to the bar code reader mentioned in #7).

6 Exchange Slit Masks [20 minutes]
The wheel advance button shall be used to advance the slit mask wheel until the first slit mask is centered in the MOS access panel. Each slit mask is mounted in a mask holder, which shall be unclamped and clamped with fasteners integrated into the wheel and plate assembly. After a slit mask has been exchanged, this process shall be repeated until all of the new masks are placed in the instrument.

Note 1: This step assumes that the new set of slit masks have already been mounted into their holders. This may be done either by the observer or the observatory staff and assumes the existence of at least two complete sets of mask holders. If no new mask needs to be loaded into a given position, an empty holder shall be loaded to maintain the balance of the wheel.

Note 2: During assembly and testing, we will determine if a blank mask must be loaded into the holder in order to maintain the balance of the wheel.

Note 3: The dry air purge could remain on under humid conditions to insure a positive pressure of dry air inside the MOS section during the slit mask exchange process.

7 Record Mask IDs [10 minutes]
The barcode reader and associated software shall be used to read and record the ID of each slit mask in the wheel. The wheel advance button shall be used to advance the wheel to each of the slit mask positions. To insure that all of the slit masks in the wheel are known (and correct) all of the slit mask positions should be scanned at this step, regardless of whether or not all of the slit masks were exchanged. This information
should then be automatically updated on the instrument control software so that the current mask configuration may be easily checked (again) against the observer’s request when the mechanisms are exercised (see #10).

Note: For empty slit mask holders, a special bar code will be required so that these positions may be specifically flagged as empty. This bar code may be printed on the outside of the instrument, or some other convenient place.

8 Close MOS access panel [10 minutes]
The MOS access cover shall be bolted back into place. Care shall be taken to insure that the O-ring is properly seated.

9 Enable Remote MOS Mechanism Control [0 minutes]
The switch next to the MOS access panel shall be toggled to return remote control of the MOS mechanisms to the instrument control GUI and disable the wheel advance button.

10 Exercise MOS Mechanisms [10 minutes]
The Slit and Dekker wheels shall be briefly exercised to insure that both wheels are functioning properly and to double check that the proper masks are loaded into the wheel. The Dekkar wheel shall be placed into the dark position.

11 Pump Out MOS Dewar [30 minutes]
The vacuum pumps for the MOS section shall be activated until the target pressure is achieved.

12 Cool MOS Dewar [240 minutes]
LN2 shall be used to fill the MOS LN2 vessel and cool the MOS section to its operating temperature.

13 Open Gate Valve [0 minutes]
The gate valve shall be opened by pressing a button on the instrument control interface, provided the interlock conditions have been met. At this point the instrument should be ready for the observer to take calibration data.

Calibration Frames
Once the gate valve has been opened the observer will likely obtain images of each mask for alignment purposes as well as arc and flat exposures for quick-look calibration during the night.
MMIRS Warm Up and Cool Down Procedure

Paul Martini
April 25, 2005

Overview

This document describes the steps required to warm up and cool down the MMIRS instrument. The MMIRS instrument is divided into two sections. The first is a smaller section (hereafter the MOS section), which contains the corrector optics and the Slitmask and Dekker wheels. The second, larger section (hereafter the Camera section) contains the camera and collimator optics, the grism and filter wheels, and the detector. These two sections can be hermetically separated with a gate valve. The MOS section will be warmed up and cooled down on a regular basis, a procedure which will require on order eight hours total. The Camera section will require substantially longer as both the optics and the detector are very sensitive to thermal shocks and therefore should not be exposed to a gradient of greater than 0.1K/minute. As the operating temperature is 77K (220K below ambient), the fastest warm up and cool down time is therefore approximately 37 hours. In practice the warm up and cool down may require up to twice as long.

This document only describes the warm up and the cool down procedure for the entire instrument. The warm up and cool down procedure for the MOS section alone is described in the document “MMIRS Slit Mask Exchange Procedure”. As MMIRS will require over a day to warm up or cool down, it is assumed that MMIRS will be mounted on its handling cart, and not the telescope, during the warm up and cool down procedures.

Warm Up Procedure

The assumed starting point for the warm up procedure is that MMIRS has just been removed from the telescope after a night of observing and moved to a work area. Prior to removal from the telescope, MMIRS may be oriented to dump the remaining LN2 in the MOS and Camera sections.

1 **Close Gate Valve**

The gate valve between the MOS and Camera sections shall be closed. This may be done prior to removal from the telescope.

2 **Activate Heaters**

The MOS and Camera section heaters shall be activated to warm up the instrument. The Camera section heater shall be connected to the designated temperature sensor (described in the document MMIRS Temperature Sensing and Heating Requirements) in an active control loop to insure that the warm up rate for the Camera section will not exceed the maximum rate prescribed above. There are no specific restrictions on the warm up rate for the MOS section. Once the temperature sensors in each section are equal to the ambient temperature value, the heaters shall shut off automatically.
3 Open Gate Valve
Once both the Camera and MOS sections reach the ambient temperature the gate valve between them shall be opened.

4 Dry Air Fill
MMIRS should be filled with dry air (assumed to also be at the ambient temperature) via the vacuum port. A pressure gauge shall be used to insure the instrument is backfilled to ambient pressure. This fill will insure that all surfaces inside the instrument are sufficiently warm so that no condensation occurs when the instrument is exposed to ambient conditions.

5 Open to Ambient Conditions
After MMIRS has had time to come into equilibrium with the dry air fill, which should require on order 30 minutes, the instrument may be exposed to ambient conditions.

Cool Down Procedure
The cool down procedure is expected to start immediately after the instrument has been sealed. At the start of the cool down procedure it is assumed that the gate valve is open. The final cover to be installed on the MOS section is the MOS access panel. The final steps for sealing the Camera section will be installation of the main radiation shield and the outer vacuum case.

The instrument is assumed to be oriented horizontally on its cart with the V-block above the optical bench. The electronics racks are unlikely to be mounted on the instrument itself, but will be properly cabled and powered on so that the temperatures and pressures may be monitored during the cool down procedure.

1 Vacuum Pump
The instrument will be pumped via the port on the MOS section. The camera section will therefore be evacuated via the MOS section. MMIRS shall typically be pumped to a pressure of 10^{-5} Torr.

2 Close Gate Valve
The gate valve shall be closed so that the potentially much more rapid cool down of the MOS section does not affect the Camera section, particularly lens 3.

3 Camera Section LN2 Fill
The Camera Section will be cooled no faster than the maximum rate specified above. This is the maximum rate as measured by a temperature sensor on the top surface of the optical bench (see the document MMIRS Temperature and Sensing Requirements), the surface to which the VEE blocks and detector are mounted. The rate of LN2 supply will be controlled by a Cryogenic Valve connected via a feedback loop to the temperature sensor. This feedback loop will open and close automatically to control the LN2 rate per
minute and be designed to insure that the cool down rate does not exceed the maximum rate.

4 Notes on Potential Software
Two large LN2 supply dewars will be required to complete the Camera section cool down. When the tanks are swapped, the feedback control loop will likely need to be reset. The details of this procedure will be determined during initial cool down tests and may require specific software.

During the cool down two specific conditions will arise that may require automatically shutting down the Cryogenic Valve. These are the above condition when the external tank is empty and the case when the instrument is completely full, yet not at the set temperature. A stop condition for the autofill will be explored during integration and testing.

5 MOS Section LN2 Fill
LN2 shall be added to the MOS section. No restrictions are placed on the MOS section cool down rate.
MMIRS MAINTENANCE AND SERVICEABILITY

Paul Martini
May 2, 2005

100 Introduction
This document presents an outline of the maintenance and servicing plan for the MMIRS instrument and
in particular is intended to address the specifications laid out in sections 820 – 850 of the MMIRS
Functional and Performance Requirements (F&P) document (S-MMIRS-200). If there are any
discrepancies between this document and the F&P, the F&P shall prevail.

200 Maintenance
MMIRS has been designed for a minimum of regular maintenance by the observatory staffs, both through
a careful integration and test plan prior to commissioning and the use of instrument monitors to diagnose
potential problems early. Demand on the time of the observatory staff will also be lessened by an autofill
system, which shall be used to provide LN2 when MMIRS is not mounted on the telescope, and by a
computer-controlled warm up and cool down system, as this procedure requires approximately 36 hours.

The mode of MMIRS that will require the most observatory staff support is the MOS mode, which shall
require cutting slit masks, warming up the MOS Section, exchanging slit masks, and cooling down the
MOS Section. This procedure is described in detail in “MMIRS Slit Mask Exchange Procedure.” The next
subsections outline the expected maintenance that will be requested of observatory staff, as well as an
outline of the plan to provide suitable training and documentation.

210 Routine Maintenance
MMIRS will require several, regular maintenance tasks and servicing by local observatory staff. These
actions will include:
- Daily filling of the MOS and Camera Sections with LN2 [when on telescope]
- Monitoring the Autofill System [when off telescope]
- Cutting MOS Masks
- Slit Mask Exchange
- Installation on and Removal from the Telescope

220 Training
An introduction shall be provided to the observatory staff during the commissioning runs at each
observatory. In any event, some assistance by the observatory staff will be essential for the assembly and
disassembly of MMIRS at each facility and this will provide an excellent opportunity to explain the
instrument at the system level.

Training will be provided for all of the tasks outlined in the Routine Maintenance section above. Training,
documentation, and spares will also be provided to handle expected failure scenarios. These are described
further in the section on “Failure Scenarios” below.
230 Instrument Team Participation
MMIRS will require the presence of one or more members of the instrument team during the first few visits to each observatory, both for assembly and disassembly as well as troubleshooting and streamlining operations. The instrument team’s presence is expected to be particularly necessary during assembly, initial installation on the telescope, and disassembly prior to shipping. After several iterations of assembly and disassembly, the need for the presence of members of the instrument team will be reevaluated.

240 Specialized Maintenance
Other maintenance tasks for MMIRS may include filter and grism changes, as well as repair or replacement of the temperature sensors inside the Dewar. These operations will require the presence of the instrument team, but as they are not time critical they can be performed before or after the instrument is shipped between observatories.

300 Reliability
MMIRS has been designed for reliability, including by selection of mechanical components from known and recommended vendors (including cryo-rated components were appropriate). Reliability is particularly important for components inside the Dewar as these components will require at least one week for repair (see the section on Major Failures below). The most critical components inside the Dewar are the Phytron motors, as they are not static and are required for regular operations. However, these motors are quite robust. They are rated for over four million revolutions, which is over an order of magnitude more than expected for the specified ten-year lifetime. Another critical area is the integrity of the vacuum vessels, particularly the areas around the LN2 fill ports. This will require monitoring of the pressure inside the Dewar and care that the O-rings in the vicinity of the fill ports are not frozen and damaged through contact with LN2.

400 Lifetime
The F&P specifies that MMIRS shall be designed for a lifetime of ten years without a major overhaul and the current design is expected to meet this requirement. The components inside the Dewar that are most likely to require maintenance during a major overhaul are the motors and micro-switches, although during a major overhaul the mechanisms would be lubricated again. The MMIRS components outside of the Dewar can be readily swapped during dark time or when MMIRS is being (dis)assembled for shipment between the two observatories. Replacement of these components is therefore not considered to constitute a major overhaul.

500 Failure Scenarios
The amount of effort and time lost to repair a failure will depend on whether or not the instrument must be warmed up in order for the failure to be repaired. Failures that do not require opening the instrument will be termed minor failures, while those that do will be termed major failures.

510 Minor Failures
Minor failures are failures of components outside of the Dewar that can easily be replaced and therefore should cause the loss of no more than one night of observing time. Several of the most likely sources of failure are:
These types of failures could be addressed by the local staff, perhaps after phone consultation with the appropriate member of the instrument team. Spares for these components will be provided, as well as suitable documentation and training for the most common scenarios.

520 Major Failures

Major failures are defined to be failures that occur inside the instrument, and consequently will require thermally cycling the instrument and the travel of members of the instrument team to the observatory. Repair of a major failure will require approximately one week. An example is the failure the Grism Wheel motor in the next subsection.

521 Filter Wheel Motor Failure

A motor failure is most likely to occur during the night, since that is when the motors experience the most use. Once a motor failure has been diagnosed, the PI shall be called for consultation and a confirmation that opening the instrument is the only remedy for the problem. This may require consultation with several other members of the instrument team and therefore a final decision to warm up the instrument may wait until the following morning. Once the decision has been made to open the instrument, MMIRS should be removed from the telescope and the warm up procedure begun. As the warm up procedure requires at least 36 hours, members of the instrument team should be able to travel to either observatory before the warm up is complete. The warm up procedure is described in “MMIRS Warm Up and Cool Down Procedure.” Once the instrument is warm and backfilled with dry air, the instrument may be opened for repair. This will involve disconnecting the detector electronics, removing the vacuum housing of the Camera Section, and then removing the radiation shield. All of the motors will then be accessible and can be readily exchanged. After tests of the new motor, the instrument can be pumped out and cooled down again.

530 Catastrophic Failures

Catastrophic failures are defined to be failures which put the instrument out of service for at least six months. The two major sources of catastrophic failure are failure of the infrared array detector and failure of one or more optical elements. Both of these catastrophic failure scenarios will require long lead-time replacements.
Section XI.5

Shipping and Installation Plans

This document will be available at the CDR.
MMIRS Assembly and Test Plan

Paul Martini, Brian McLeod
April 25, 2005

Overview
This document outlines the assembly and test plan for the MMIRS instrument. The details of these tests are or will be described in other documents. The purpose of this document is to present the overall plan for the assembly and testing of various components and to note the requirements of each step. This plan has been divided into three sections: minor component tests, major component tests, and system integration. Within these broad sections, the individual tests are in approximately chronological order, although subsets of the minor and major component tests can be carried out in parallel. Many of the minor component tests are already underway and are meant to establish the operation and performance of key (though small in size) components, as well as to establish software control of these components. The major component tests are centered on the initial assembly of three physically large, yet somewhat separable components: the MOS section, the Camera section, and the Electronics Racks. The system integration tests involve the final assembly and verification of the entire instrument.

Minor Component Tests
These are tests of individual components that will be performed prior to their integration into the MMIRS structure, particularly into the MOS and Camera sections.

Motor
This will verify that the software can control a motor. The required components are a motor and the corresponding electronics and software. This test has been completed.

Cold Motor
This will verify the performance of the motors under vacuum and cryogenic conditions. The required components are John Geary’s small dewar, a motor, and software.

Gate Valve Mechanism
This will verify software and hardware control of the gate valve. The required components are the gate valve, motor, and associated software and electronics.

Cryogenic Valve
This will verify proper operation of the cryogenic solenoid valve and how well the cool down rate of the test dewar can be controlled by the Omega Temperature Controller. The required components are the detector test dewar, the cryogenic valve, and the Omega Temperature Controller.
Detector Mount Thermal Behavior
This will verify and measure the thermal behavior of the detector mount during cool down. The required components are the detector mount, the LakeShore Temperature Monitor, associated thermal sensors, and the detector test dewar. Only a Hawaii-2 chip carrier will be installed for this test.

Detector Mount Slide
This will verify the operation of the detector slide and the LVDT. The test will be performed with the detector mount and slide in the detector test dewar at 77K. The required components are the detector mount (and slide), LVDT, and the test dewar.

Detector Electronics
This will verify the detector readout electronics. The required components are the detector mount, detector electronics, the test dewar, and an engineering-grade array. Once performance is verified with the engineering-grade array, the science array will be installed and characterized.

Guide Camera Electronics
This will verify the guide camera readout electronics. The required components are a guide camera and the associated readout electronics and software.

Guide Camera Mechanisms
This will verify the operation of the guide camera X-Y-Z stages and the WF-select slide. Required components are a complete guider camera and associated mechanisms, control electronics, and software.

Major Components
These tests are intended to verify the performance of the larger components before the instrument is assembled into its final form, particularly before the electronics racks are fully populated and cabled, and before the MOS and Camera sections are mated. The MOS and Camera section tests can in principle be performed in parallel.

Corrector Lens Alignment
This will verify that lenses 1 and 2 have been correctly installed. The positions of the lenses will be measured with the measuring machine.

MOS Section Vacuum Integrity
This will verify that the MOS section is properly sealed. A flat plate will be required to seal the bottom of the MOS section (in place of the bulkhead provided by the top of the Camera section). The vacuum system will be required for this test.

MOS Section Thermal Cycle
The MOS section shall be thermally cycled to verify the gross thermal behavior and the operation of the thermal sensors and heaters. The LakeShore temperature monitor and associated thermal sensors (and wiring) are required for this test.
Slit and Dekker Wheel Mechanisms
This will test control of the slit and dekker wheels and the detent repeatability. The slit and dekker wheels will need to be balanced and installed in the MOS section prior to this test. An alignment telescope will be used for the repeatability test. Note that this is a warm test.

Slit Wheel Alignment
This will verify that the slit wheel is in the focal plane. This test will require pressurizing the LN2 vessel of the MOS section to mimic the pressure differential of regular operations. The slit wheel will be populated with empty slit mask holders. The coplanarity of the slit mask and the MOS mounting surface will be measured with lasers and mirrors.

Camera Section Vacuum Integrity
This will verify that the Camera Section is properly sealed. The gate valve must be installed for this test. No components will be installed on the optical bench.

Camera Section Thermal Cycle
The Camera section shall be thermally cycled to verify gross thermal behavior and the operation of the thermal sensors, heaters.

Optical Bench Flexure
This will test flexure of the optical bench supported by the G10 ring. The weight and moment of the final components will be mimicked with a counterweight attached to the bench and the Camera section shall be rotated to a range of orientations. The angle between the bulkhead and the surface of the optical bench at each orientation shall be measured with a laser mounted on the bench and a mirror on the bulkhead. This test should be performed before any mechanisms are installed on the optical bench.

VEE Block and Optics Barrel Alignment
The VEE blocks shall be attached to the optical bench using reference surfaces machined into the optical bench.

Grism and Filter Wheel Mechanisms
This will be a warm test of the filter and grism wheels and the associated software. The filter and grism wheels will need to be balanced and installed in the Camera section prior to this test. The motors, cables, and control software will also be required.

Detector Slide
This will be a warm test of the motion and control of the detector slide on the optical bench with the final electronics and cables.

Camera Section Thermal Characterization
The Camera section shall be thermally cycled with the cryogenic valve to verify that the cool down and warm up procedure can produce a rate of 0.1 K/minute. Thermal sensors
on the camera barrel (including dummy lenses), collimator barrel, and the center of the
detector socket shall be used to characterize the thermal behavior of the Camera section.

Electronics Racks Power Dissipation and Safety Conditions
This will test the insulation and thermal control of the two electronics racks. In particular,
the temperature monitors, heat exchanger, and safety shutdown conditions will be tested.
The racks should be fully populated (or at least with the components which dissipate 90% of
the anticipated power). Both of the heat exchanger units should be tested.

Guider/WFS Alignment
This will determine the alignment and operation of the Guider/WFS mounted on the
MOS Section and that the CCD cameras and the slit mask plane share the same focal
surface. *The details of this test are under development.*

Slit Mask Exchange
This will verify the entire slit mask exchange procedure (with the exception of opening
and closing the gate valve). This test includes a cold test of the Slit and Dekker wheel
motions.

Optics Positioning
The lenses shall be integrated into the collimator and camera barrels and their positions
verified with the CMM.

System Integration
These tests will verify the final integration of the entire system and will be performed
once the MOS and Camera sections have been integrated and the electronics racks fully
populated with their components. At this stage the instrument shall be placed on its cart.

Valve and Interlock
This test will involve pumping out the entire, mated instrument and verifying the gate
valve seal and the interlock conditions for the gate and vacuum valves.

Penultimate Thermal Cycle
This test will involve a complete thermal cycle of the entire instrument, except without
the detector and optics barrels installed. Temperature sensors shall be used to measure the
cool down and warm up rates of the optics barrels and the detector mount. The alignment
of the slit mask wheel, VEE blocks, and detector mount shall be verified. All of the
mechanisms shall be exercised.

Ultimate Thermal Cycle
This test will involve pumping out the entire, mated instrument with the optics and
detector installed. This test will verify the optical alignment.
Section XII.

Management

1. MMIRS Project Schedule
2. MMIRS Integration & Test Flow Chart
3. Status of PDR Action Items
4. Known/Open Issues
MMIRS Project Schedule

Task Name
- Critical Design Review (CDR)
- Pre-Ship Review
- Ship to MMT
- First Light

Major Milestones
- Engineering Prototype Test Complete at MMT
- Detector Electronics
- Design boards rev 1 (12 channel) - SWIRC
- Manufacturing instruction - SWIRC
- Test multiloader rev 1 - SWIRC
- Test Engineering Array - SWIRC
- Test 32 Channel SWIRC at MMT
- Final Board Design
- Manufacture flat boards & cables
- Cryo Test Chip Carrier
- Cryo Test Multiloader
- Detector - Rack Electronics
- Receiver and Review Detector Mount Design from U of F
- Focus Slide Detail Design
- Procure Focus Detector Slide Components
- Procure Fabricate Cables
- Assemble Focus Slide - Warm - Without Array
- Test Focus Slide - Warm - Without Array
- Test Slide - Cryo - Warm - Without Array
- Detector Preamp Packaging
- Design Preamp Packaging & PCB
- Procure Components
- Fabricate PCB
- Assemble & Test Components
- Detector - Science Array & Slide Integration
- Assemble Slide, Detector Electronics & Engineering Array
- Cryo Test Assembly - with Engineering Array
- Assemble Slide, Detector Electronics & Science Array
- Test with Science Array - Warm
- Cryo Test with Science Array
- Detector Performance Evaluation

Optics
- Complete Preliminary Lens Design
- Generate Spec
- Generate Warm Optic Calculations/Specifications
- Generate Drawings
- Prepare RFQ
- RFQ Submitted to Vendors
- Vendor Selection
- Phase Optic Procurement (SPIF/MS Blank)
- Receive SPIF/MS Melt Data
- Review Vendor Test Plate Data
- Update Optics Design
- Issue Contract
- Optic Procurement - Post Test Plate
- Optic Acceptance Testing/Inspection
- Complete Design

Deadline
- 5/12
- 10/13
- 11/27
- 1/11
- 2/15
- 5/23
- 12/14
- 1/11

Project Summary

External Tasks

External Milestones

Progress

MMIRS CDR Data Package Copy

Page 1
<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
</tr>
<tr>
<td>62</td>
<td>Generate Spec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Generate Drawings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Prepare RFQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>RFQ Submitted to Vendors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Vendor Selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Procure Grism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Grism Acceptance Test/Inspection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Filters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Generate Spec Agreements with Consortium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Consortium init-U-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Procure Filters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Filter Acceptance Test/Inspection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Motor Control Software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Investigate UMAC SW Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Develop Test Support SW for Motor Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Motor Control & Drive SW Ready for Test Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Write UMAC Init-U-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Release Milestones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Ref 1 - SCI Cam Serv 1, ThiRM Vac Serv 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Ref 1 - Eng GUI, Mid Div Serv 1, ThiRM Vac Serv 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Ref 2 - Mid Div Serv 2, Rock Mat, Barcodise, Par Cntl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Ref 3 - Eng SCI Cam Serv 1, Comp GUI, Crys, Ds, Gu, GuidSv Gu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Ref 3 - Eng SCI Cam Serv 1, Comp GUI, Crys, Ds, Gu, GuidSv Gu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Ref 4 - SCI Cam Serv 1, Comp GUI, Crys, Ds, Gu, GuidSv Gu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Ref 4 - SCI Cam Serv 1, Comp GUI, Crys, Ds, Gu, GuidSv Gu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Ref 5 - Planning GUI, GSSTARS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Electronics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Design Complete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>System Block Diagram and Interconnect Complete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Electronic Rack/Package</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Revise U of F Rack Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Design MMIRS Electronic Rack/Package & Internal Cabling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Fabrication Drawings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Procure Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Fab & Assemble Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Fab & Assemble Internal Cables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Assemble/Test of Rack Components and Cabling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Interconnect Cabling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Total Design of Interconnect Cabling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Fab & Assemble Interconnect Cabling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Balance of Cables for Vacuum Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Ground Support Equipment (GSE) and Prototyping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Test Dewar - GSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Procure/Fabicate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Design & Test (Qual) the Test Dewar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Motor Test and Evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Design Motor/Control Prototype Setup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Procure Components (including test motor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Assemble & Test Motor/Control Prototype – warm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Cryo Test Motor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Purchase All Mtns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Gate Valve Test Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Design Pump Station Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Procure Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Assemble & Prep for Gate Valve Testing (see below for Gate Valve Test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Thermal & Structural Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Task Name</td>
<td>2005</td>
<td>2006</td>
<td>2007</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>201</td>
<td>Perform Image Motion Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>WFS Instrument Camera Sub-Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Procure Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Assemble & Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>WFS & Guider Assembly (with Instrument Camera)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>Integrate WFS Camera Sub-Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>Prepare system test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>MOS Section Thermal-Vac Test (without Guider/WFS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Prepare WFS Chamber & Clean Assembly for Thermal-Vac Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Perform Thermal-Vac Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>Clean & Install Correction Lens Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>Perform Thermal-Vac Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>Prepare for Integration and Test with Camera Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Design & Camera Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>Refine Concept Design (updates from PDR review, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>Camera Design - Critical/Long Lead Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>Detail Design Complete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>Vacuum Chamber Subassembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Procurement of Vacuum Chamber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Procurement of Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Assemble & Vacuum Leak Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Optics Subassembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Procurement of Optical Bench with its Bearing and LN2 Lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Detail Inspection & Clean for Vacuum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>Gate Valve Subassembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>Receive Quote from VAT (vendor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>Procure Gate Valve Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>Test with Motor Drive on Test Plate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Assemble & Test Vacuum Integrity on Pump Station Test Setup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>Grism Subassembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Procure Components (including mass simulators)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Assemble with Grism & Filter Mass Simulator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>Test Drive System & Borers - warm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Disassemble Components for Clean Prep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>Clean Prep all Components for Vacuum Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>Re-Assemble with Grism & Filter mass simulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>Optical Components Subassemblies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>Procure Vee Block #1 Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>Procure Vee Block #2 Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>Assemble Test Mirrors into Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>Assemble to Mount with Test Mirrors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>Assemble Deliverable Lenses into Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>Camera Section Assembly & Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>Assemble U2 Lines to Optical Bench</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>Vacuum Leak Test & Thermal Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>Integrate Thermal Isolator and Bulkhead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>Integrate Vacuum Valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>Integrate Focus Slide Subassembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Integrate Grism/Filter Subassembly (optic mass simulation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>Integrate Optic Components Subassemblies (with Test Optics)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>Integrate Vacuum Chamber and Thermal Shrouds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>Vacuum Leak Test and Thermal Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>Disassemble to Remove Test Optics and Mass Simulators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>Install and Align Optic (see Optical Comp. Subassemblies)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>Install Test CCD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>Vacuum Leak Test and Thermal Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MMIRS Project Schedule

Section XII.1

MMIRS CDR

Page 4
<table>
<thead>
<tr>
<th>Task Name</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 258 Prepare for Integration and Test with MOS Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 260 Cryostat Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 261 MOS Section Ready (without WFS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 262 Electronics Rack & Interconnector Cables Ready</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 263 Integrate Camera and MOS Sections, Connect Cables to Rack</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 264 Perform Vacuum Leak Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 265 Perform Electrical Functional Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 266 Evaluate Optical Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 267 Reuse MOS & Camera Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 268 Evaluate Optical Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 269 Reuse MOS & Camera Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 270 Reuse MOS & Camera Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 271 Evaluate Optical Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 272 Reuse MOS & Camera Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 273 Evaluate Optical Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 274 Reuse MOS & Camera Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 275 Evaluate Optical Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 276 Reuse MOS & Camera Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 277 Evaluate Optical Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 278 Reuse MOS & Camera Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 279 Evaluate Optical Alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 280 All Systems Testing at SAD Telescope Simulator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 281 Prepare Telescope Simulator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 282 Evacuate and Cool Crystal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 283 Assemble Crystal to Telescope Mount</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 284 Assemble Electronic Racks to Telescope Mount</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 285 Install Cables to Racks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 286 MMIRS Ready for Installation on Telescope Simulator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 287 Mount MMIRS to Telescope Simulator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 288 MMIRS Functional Test - Initial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 289 Test Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 290 Vent MOS Chamber & Change Slit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 291 MMIRS Functional Test - Final (if required)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 292 Test Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 293 MMIRS Functional Test - Complete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 294 Prepare & Ship to MMT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 295 Disassemble & Prepare for Shipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 296 Shipping Containers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID 297 Skip to MMT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MMIRS Project Schedule
NOTES:
1. ASSEMBLE PER PROCEDURE MMIRS-P-TBD?
2. PRE-ASSEMBLY AND TESTING TO USE PROCEDURE STATED IN NOTE 1 FOR DEBUGING OF PROCEDURE.
MMIRS PROGRAM FLOW
CAMERA SECTION

NOTES:
1. ASSEMBLE PER PROCEDURE MMIRS-P-TBD
2. PRE-ASSEMBLY AND TESTING TO USE PROCEDURE STATED IN NOTE 1 FOR DEBUGGING OF PROCEDURE.
NOTES:
1. ASSEMBLE PER PROCEDURE MMIRS-P-TBD
2. USE PROCEDURE STATED IN NOTE 1 FOR PRE-ASSEMBLY TASKS
 TO DEBUG PROCEDURE FOR FINAL ASSEMBLY

MMIRS PROGRAM FLOW CHART
CRYOSTAT
MMIRS FLOW CHART

1. TESTED CRYOSTAT FROM PAGE 6
2. MANUFACTURE CRYOSTAT CAMERA VACUUM & TEMPERATURE FOR THE TESTING PERIOD UNLESS PROBLEMS REQUIRE TEARDOWN
3. INSTALL WFS (2) AFTER MOUNT ASSEMBLED
4. START OF TEST FLOW AT TELESCOPE
5. USE & DEBUG PROCEDURE
6. RECORD TIME REQUIRED
7. REPEAT THIS LOOP UNTIL REQUIREMENTS SATISFIED
8. END TESTING

A. SHIP TO TELESCOPE
B. PREPARE FOR SHIPMENT
C. DIS-ASSEMBLE TO SHIPMENT CONFIG.
D. BRING CRYOSTAT TO ROOM TEMP & PRESS.

MMIRS COMPONENTS TO THE MMT TELESCOPE ROTATOR SIMULATOR AREA

• MOVE ALL MMIRS COMPONENTS TO THE MMT TELESCOPE ROTATOR SIMULATOR AREA
• DESIGN AND FABRICATE FIXTURES
• CONTROL COMPUTER TELESCOPE CABLES
• MOTOR TEST BOX
• TEST CABLES

EGSE

• DESIGN AND FABRICATE EQUIPMENT

MGSE

• DESIGN AND FABRICATE FIXTURES
• CRYOSTAT HOLDER
• MOS SLING
• MOS SLING ALIGNMENT FIXTURES
• TELESCOPE INSTALLATION

TEST FIT TO MMT SIMULATOR

• CRYOSTAT
• TELESCOPE MOUNT
• RECEIVE AND INSPECT
• ELECTRONICS RACKS
• PLACE ELECTRONICS IN RACKS
• MAKE CABLE CONNS AND TESTS

CONNECT ALL CABLES CRYOSTAT TO RACKS

• ASSEMBLE TO TELESCOPE MOUNT
• ASSEMBLE ELECTRONICS RACKS TO FRAME

MOUNT MMIRS TO MMT SIMULATOR

• Telescope Computer System
• Load Final Software
• Log Data & Evaluate Results
• Perform Functional Test
• Perform Venting and Repairs-If Required

SHIPPING CONTAINERS

• Design Shipping Containers
• Purchase or Fab Containers
• Receive & Inspect

DIS-ASSEMBLE TO SHIPMENT CONFIG.

• Receive & Inspect
• Evacuate & Cool Down CRYOSTAT
• Ship to Telescope

END TESTING

• Prepare for Shipment
• Final Software
• Load

WRITE SHIPPING PROCEDURE

• Fit Checks Pressure Tests

SMITHSONIAN ASTROPHYSICAL OBSERVATORY
CENTRAL ENGINEERING
CAMBRIDGE, MA
SMITHSONIAN ASTROPHYSICAL OBSERVATORY

MMIRS PROGRAM FLOW PROTOTYPES

SMITHSONIAN ASTROPHYSICAL OBSERVATORY

MMIRS FLOW CHART

CENTRAL ENGINEERING

CAMBRIDGE, MA

REVISIONS

<table>
<thead>
<tr>
<th>ZONE</th>
<th>LTR</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>APPROVED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>9/9/04</td>
<td></td>
</tr>
</tbody>
</table>

SIZE CODE IDENT NO. DWG NO.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>CODE IDENT NO.</th>
<th>DWG NO.</th>
<th>REV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>50944</td>
<td>MMIRS-301</td>
<td>1</td>
</tr>
</tbody>
</table>

SCALE

<table>
<thead>
<tr>
<th>SCALE</th>
<th>Visio Pro V2000</th>
<th>SHEET</th>
<th>OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Comments and Responses from MMIRS PDR 06 July 2004

<table>
<thead>
<tr>
<th>Number</th>
<th>Comment</th>
<th>SAO Response/Action</th>
<th>Actionee</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>MT: Concerned we are not following proper order: Requirements --> Design.</td>
<td>SAO to publish F&P. Plan to send out by 30 July, 2004. The document will be released with TBR/TBD's where no spec has been resolved.</td>
<td>BM</td>
<td>Closed</td>
</tr>
<tr>
<td>002</td>
<td>JJ: Flamingos2 filters from OCLI and Barr have pinholes. They had to blacken them using microscope.</td>
<td>SAO will specify appropriately and perform acceptance inspection.</td>
<td>BM</td>
<td>Closed</td>
</tr>
<tr>
<td>003</td>
<td>MT: Asked how we will align cold pupil.</td>
<td>Alignment by design, fabrication and assembly. Confirmation at telescope integration.</td>
<td>BM</td>
<td>Closed</td>
</tr>
<tr>
<td>004</td>
<td>EH: Questioned necessity of having G2, G3, and G4 in Zemax tolerancing.</td>
<td>An explicit flexure calculation will be done which combines the IDEAS model with ZEMAX analytical tool – to be presented at CDR</td>
<td>BM</td>
<td>Closed</td>
</tr>
<tr>
<td>005</td>
<td>JH: Asked what is scale change when we refocus from J->H-> K.</td>
<td>Worst case is between J and H where the image position at the corner of the field shifts by 15 microns.</td>
<td>BM</td>
<td>Closed</td>
</tr>
<tr>
<td>006</td>
<td>JJ: Discussion of CaF2 allowable stress. UF uses 1500PSI. We've been using 200 as a nominal limit, but the front window shows 400. DGF thought 400 would be ok if it were single crystal CaF2.</td>
<td>Adopted 400 psi.</td>
<td>BM</td>
<td>Closed</td>
</tr>
<tr>
<td>007</td>
<td>RF: Asked about rotational constraint of lenses in cryo mounts.</td>
<td>BM @ PDR: I don't think this is a big issue as the tolerances on rotation will be 10's of degrees even if we try to optimize wedges on lenses.</td>
<td>BM</td>
<td>Closed</td>
</tr>
<tr>
<td>008</td>
<td>RF: Asked if lenses deflections from 3pt mount is acceptable.</td>
<td>BM@PDR: This needs to be analyzed.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>Action Item Responses from 2004 PDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>009 RF: Concerned about tolerance stackup of tilts in lens barrels. Discussed whether you would want to face off a whole stack of components. Alternatively can we optimize by rotating the spacers?</td>
<td>BM@PDR: Goal is to rely on machining tolerances. SAO will design with groups of lenses.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 JJ: In Flam they had threaded lens barrel assembly to minimize stackup errors and simplify warm/cold switchover. Also recommended treating groups of lenses to prevent stack up of tolerances.</td>
<td>SAO will design with groups of lenses.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011 DF: Are we concerned about Janos ability to not exceed 2% loss value used in throughput assumptions?</td>
<td>Coating spec calls for R<0.5% avg. At least one vendor claims this is achievable. Janos claims to do R<1.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>012 JJ: Are we going to test plate the optics?</td>
<td>BM/DF @ PDR: Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>013 JJ: Given the tight tolerances, is there adequate budget in the thermal and structural areas?</td>
<td>See MMIRS-S-203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>014 JJ: Will we perform tests to quantify lens mount pad shrinkage?</td>
<td>See MMIRS-S-203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>015 JJ: Will there be some sort of cushioning material used on the lens mount axial restraints?</td>
<td>GN @ PDR: Kapton tape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>016 MT: Asked about interlock on Electronics rack doors. We have no formal requirement, but is this needed for safety?</td>
<td>No interlocks are planned. T.Gauron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>017 MO: Suggested coordinating cabling with Megacam Magellan Topbox so we have interchangeability.</td>
<td>Designs are reviewed and used where applicable. T. Gauron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>018 MT: Warned of problems with Phytron motors on GNIRS and NIRI. Need to do incoming cryo tests/inspection.</td>
<td>SAO to perform.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>019 MT: Asked about LVDT stability, but then retracted when he got units sorted out: 2.5mm * 0.001 = 2.5um. This is less then spec so OK.</td>
<td>No action needed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020 DF: Do we even need the LVDT?</td>
<td>SAO to include for positional information. BM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 JJ: UF puts temp sensors in racks to cut power if temp exceeded, eg if cooling is turned off.</td>
<td>SAO to include. MB/TG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 JJ: Watch out for noise pickup from focus and temp sensors on detector electronics.</td>
<td>SAO is advised. Detector electronics are going in own housing/cabinet and will be tested for noise. MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>023 JJ: UF found it useful to increase motor current temporarily via software during Integration and Test. Apparently not possible with stepper drivers we are using?</td>
<td>Not available. SAO to use hardware change in current limiting resistor. MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>024 DF: Asked about access to MOS wheels for changeout. JJ suggests making opening much larger.</td>
<td>SAO to incorporate a larger opening. GN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Comment</td>
<td>Action</td>
<td>Response</td>
<td>Status</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>025</td>
<td>DF: Suggests removing flat from bottom of Lens 1 and put curve on mating piece. We need to check on impact on required tolerance.</td>
<td>Design discussion held and use of flat approved.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>026</td>
<td>MT: Questions 80+/−3 on MOS specs. Need to review.</td>
<td>Established T<120K, within 10K of final temp for operation.</td>
<td>BM</td>
<td>Closed</td>
</tr>
<tr>
<td>027</td>
<td>TB: Asked if 1 pix repeatability on MOS wheel is good enough. Impact on flats?</td>
<td>MOS Repeatability will be 10 microns. In addition we plan to have continuum and HeNeAr lamps outside the MOS window. System flexure is relevant and will be presented at CDR.</td>
<td>BM</td>
<td>Closed</td>
</tr>
<tr>
<td>028</td>
<td>DF: Suggests making mockup of mask insertion mechanism</td>
<td>Enlarged opening & using proven U of F design.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>029</td>
<td>DF: Concerned about torque of stepper motors. Do we have enough margin?</td>
<td>Design calculations and torque margin to be presented in CDR data package.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>030</td>
<td>JJ: UF bearing races are V-grooves on one side, flat on other. Moly-disulfide powder burnished in.</td>
<td>SAO changed to incorporate this design.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>031</td>
<td>DF: Need to verify 3000 rpm on steppers.</td>
<td>SAO subsequent design change results in 1500 RPM. Calculations to be presented in CDR data package.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>032</td>
<td>JJ: Questions need for gearbox on motor. Tradeoff w/ higher pitch worm? Use flexible coupling on drive.</td>
<td>Design calculations to be presented in CDR data package.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>033</td>
<td>JH: Are motor specs adequate for warm operation.</td>
<td>Specs are de-rated for cryo environment.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>034</td>
<td>JH: What is time lag between imaging and cutting of slit masks. Would be desirable to do imaging and spectroscopy in same observing run.</td>
<td>Magellan requires several week lead time for mask manuf. Will use outside shop in Arizona, so same-run img/spect not possible.</td>
<td>BM</td>
<td>Closed</td>
</tr>
<tr>
<td>035</td>
<td>DF: Need FEA of thermal standoff ring. Doesn't it introduce bending forces? (I'm sure this is planned if not already done.)</td>
<td>Design and analysis done and to be presented at CDR.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>036</td>
<td>JJ: Filter washers. Suggests using indium instead of teflon because of higher thermal conductivity.</td>
<td>SAO agrees to use either indium or silver foil.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>037</td>
<td>JJ: Make opening in outer filter wheel or grism wheel large enough so that access to inner filter wheel is easy.</td>
<td>Design incorporated and will be presented at CDR.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>038</td>
<td>DF: Think about servicing issues now.</td>
<td>SAO to include procedures in CDR data package, ie “Slit Mask Exchange”, “Warm up and Cool Down” procedures.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>039</td>
<td>MT: Filter wheel access. Can we make it easier to change filters?</td>
<td>See #037</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>040</td>
<td>GN: Concerned about accuracy of home switches. How repeatable are</td>
<td>SAO to analyze and report at CDR.</td>
<td>GN</td>
<td>Closed</td>
</tr>
<tr>
<td>Action Item</td>
<td>Description</td>
<td>Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>041 AS</td>
<td>Concerned if we increase backlash, will that cause problems with stepper motor performance?</td>
<td>See #040 GN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>042 TN</td>
<td>How accurately do we need to set limit switches on valve. How do we know if we are really closed?</td>
<td>SAO is building prototype for test. GN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>043 JG</td>
<td>Suggests test purge of MOS chamber with small amount of GN2 to verify gate valve integrity before completely backfilling.</td>
<td>See “MMIRS Warm Up and Cool Down Procedure” part of CDR data package. GN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>044 DF</td>
<td>Put handles on outer shell of instrument if they are heavy.</td>
<td>Lift features are added where necessary. GN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>045 MT</td>
<td>Suggests writing Operational Concepts Document to include Observing Procedures and Installation Procedures (loading dock to telescope)</td>
<td>Draft Installation Plan to be presented at CDR. BM</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>046 EH</td>
<td>Check CG moment of instrument.</td>
<td>See CDR Data Package. GN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>047 DF</td>
<td>Can we minimize detector connection by using bellows assy inside dewar? JJ says they use hermetic D-connectors on radiation shields.</td>
<td>Considered but not implemented. Design to be presented at CDR. GN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>048 RF</td>
<td>Questions Henry’s Lens mount model (Slide #12) -- are the constraints correct?</td>
<td>Boundary constraints in the model were correct to the extent the lens was modeled in a linear way. Lens mount design has changed and re-analyzed. HB</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>049 JJ</td>
<td>Are we being too conservative by specifying flexure limits from zenith to horizon rather than for duration of observation?</td>
<td>Flexure limits have been changed to be for 2 hour observation BM/PM</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>050 JJ</td>
<td>Is GrafTech really necessary? Does it adversely affect optical alignment?</td>
<td>GrafTech eliminated from design. GN/SP</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>051 DF</td>
<td>Can we weld V-block to bench to increase thermal efficiency? Much discussion of thermal design. This needs much closer scrutiny.</td>
<td>V-blocks not welded. Revised thermal analysis indicates adequate thermal contact with a bolted interface. Transient analysis showed that the optical bench will require less than 0.2C/min cooling / heating rates. Contact conductance between the optical bench and the V-block is sufficient GN/SP</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>052 JJ</td>
<td>Questions steady state thermal load of 100W and would like to discuss assumptions/calculations in more detail with Sang Park.</td>
<td>Thermal model of MOS section has been reviewed and revised. Current model indicates about 35 Watts. GN/SP</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Name</td>
<td>Task</td>
<td>Response</td>
<td>Responsible</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>053</td>
<td>BM</td>
<td>Sang mentioned continuous LN2 flow during cooldown. Not what I had envisioned.</td>
<td>Camera Dewar will be cooled actively at a rate of 0.2C/Min using controlled LN2 fill.</td>
<td>GN/SP</td>
</tr>
<tr>
<td>054</td>
<td>JJ</td>
<td>Has empirical rate of cooling of LN2 cooled dewars. He would like to review cool down calculations/assumptions with Sang Park.</td>
<td>See #053. Camera Dewar will be cooled actively at a rate of 0.2C/Min.</td>
<td>GN/SP</td>
</tr>
<tr>
<td>055</td>
<td>BM</td>
<td>Need to understand cooling rate of slit plates. How important is stability below max acceptable operating temp. IE. if 120K is acceptable can we continue to cool to 80K while observing?</td>
<td>See #026</td>
<td>BM</td>
</tr>
<tr>
<td>056</td>
<td>JJ</td>
<td>Suggests using LN2 boiloff to cool radiation shield.</td>
<td>SAO agrees to include in design.</td>
<td>GN</td>
</tr>
</tbody>
</table>
The following is a list of open issues as posted on the internal MMIRS website:

1. Specifically where is MOS LN2 vessel heater servo sensor location?
2. Where is ambient air sensor for interlock?
3. Mike B and Tom G to define whether or not there is a specialized SAO cable required for power/ethernet at each facility
4. Lens 2 Mount Design - Ken to update mount design details
5. Need to add provision for shimming detector tilt (perhaps an open discussion at the CDR)
6. Discussion of Calibration Lamps
7. Compute temp gradient in Guider window on mos chamber and on CCD camera.
8. Covers for guiders -- to address after CDR.
9. Penetrations for guider motors in light shield above MOS.
10. GWFS pinhole reference.
11. What is the procedure if the pressure starts to rise during observations, indicating there is a vacuum leak somewhere?
12. Think about implications of 71C shipping extreme.
13. Think more about requirements for gate valve interlock.