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ABSTRACT

We identify 17 possible 8.0 µm-selected counterparts to the submillimeter

galaxies in the CUDSS 14h field, derived from deep imaging carried out with the

IRAC and MIPS instruments aboard the Spitzer Space Telescope. The counter-

parts of the galaxies in this relatively faint submillimeter-selected sample are not

the same as those previously identified at shorter wavelengths in most cases. We

argue that 8.0 µm selection may offer a better means for identifying counterparts

to submillimeter galaxies than near-infrared or optical selection. Based on the

panchromatic SEDs, most counterparts appear to be powered by ongoing star

formation. Five objects in the 8.0 µm-selected counterpart sample harbor dom-

inant AGNs, and power-law fits to the SEDs suggest that an additional source
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may also host an active nucleus. The 3.6-8.0 µm colors of the infrared-selected

counterparts are significantly redder than the general IRAC galaxy population

in the CUDSS 14h field.

Subject headings: cosmology: observations – galaxies: evolution – galaxies:

formation – galaxies: high-redshift – infrared: galaxies – stars: formation –

galaxies: fundamental parameters

1. Introduction

Observations at 850µm, initially with the Submillimeter Common User Bolometer Array

(SCUBA) and subsequently with the Max Planck Millimeter Bolometer (MAMBO), have

revealed galaxies that are strong sources of dust emission but faint at visible wavelengths

(Smail, Ivison & Blain 1997, Hughes et al. 1998, Barger et al. 1998, Eales etal 1999,

Clements et al. 2004).

The SCUBA galaxy populations are important because they seem to represent the most

luminous star-forming galaxies during the epoch when star formation rates were highest. The

space density of submillimeter galaxies is orders of magnitude greater than that of 1013L¯

galaxies at low redshift (Blain et al. 2002), implying that strong evolution has greatly altered

the submillimeter galaxy populations since z = 2. Moreover, some or all of the SCUBA pop-

ulation may be the progenitors of today’s massive elliptical galaxies. The stars in nearby

elliptical galaxies and in the bulges of disk galaxies are old and tend to be metal rich. At

high redshifts, there ought to be a significant population of progenitor galaxies with star

formation rates (SFRs) high enough to produce today’s population of ellipticals and bulges

(Lilly et al. 1999). No such population has been detected in deep optical surveys, but the

SCUBA galaxies, or some of them, could represent the long-sought progenitors. Understand-

ing these so-called “SCUBA galaxies” and their place in cosmic evolution, however, requires

complementary observations at other wavelengths and in particular some way to determine

redshifts.

Observing SCUBA galaxies in visible light is difficult. The dust responsible for the

submillimeter emission obscures the primary luminosity sources, making the SCUBA galaxies

quite faint at visible wavelengths. Even identifying the correct visible counterpart to a given

SCUBA galaxy is difficult because of the large beamsize (14′′ FWHM at 850 µm) of the

James Clerk Maxwell Telescope and other submillimeter facilities. The unavoidable result is

that at visible and even near-infrared wavelengths, there are numerous potential counterparts

in the SCUBA beam, and there is no easy way to decide which of the candidates is the true
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counterpart.

One successful approach to finding counterparts has been to use radio interferometric

observations to refine the SCUBA positions and thus select a specific visible object. Chapman

et al. (2003, 2005), for example, have used this approach and have shown that radio-identified

SCUBA galaxies have a median spectroscopic redshift of 〈z〉 = 2.4. However, about 1/3 of

SCUBA sources are not detectable with current radio observations (Chapman et al. 2005)

and could represent a distinct population. It is therefore worthwhile seeking alternate ways

to identify counterparts.

This contribution describes a new program to recover submm-selected galaxies in the

mid-infrared, so as to exploit the advantages this passband offers for better identifications of

the counterparts to these important objects. Our submm sample is comprised of 23 SCUBA-

detected objects in the 14h field of the Canada-UK Deep Submillimetre Survey (CUDSS; Lilly

et al. 1999, Eales et al. 2000, Webb et al. 2003). We base our infrared counterpart search

on the very deep 8.0 µm Spitzer mosaic of the 14h field. Although the Spitzer observations

(described below) include coextensive observations at a number of passbands from 3.6 to

160 µm, we use sources drawn specifically from the 8.0 µm mosaic, for the following reasons.

First, 8.0 µm observations sample rest-frame K-band emission at typical SCUBA galaxy

redshifts 〈z〉 = 2.4. They are therefore much less affected than shorter-wavelength obser-

vations by extinction due to the dust known to be abundant in galaxies that are actively

forming stars (Schmitt et al. 2006). This rest-frame K-band emission is also a good proxy

for stellar mass (Cole et al. 2001); it is therefore more sensitive to total star formation his-

tory than shorter-wavelength observations that are relatively more affected by recent star

formation.

Second, high-redshift galaxies like those selected at submm wavelengths typically have

red infrared colors that are well-suited to detection at 8.0 µm (Egami et al. 2004, Huang

et al. 2004, Frayer et al. 2004b), or at least they have red optical and near-infrared colors

(Pope et al. 2005, Frayer et al. 2004a, Borys et al. 2004, Ivison et al. 2002). Lockman Hole

galaxies were detected in 450 and 850 µm SCUBA maps with stacking analyses at 5.8 and

8.0 µm by Serjeant et al. (2004) but not at 3.6 or 4.5 µm. In addition, although the 3.6 and

4.5 µm Spitzer observations in the 14h field are somewhat more sensitive than the 8.0 µm

mosaic, they tend to detect more of the blue, relatively numerous, low-redshift galaxies that

are unrelated to the SCUBA-selected population. The resulting contamination problem is of

course more severe at shorter wavelengths, e.g., K-band. At 8.0 µm we avoid to a great degree

the problems of false associations that affect these other bands, without missing sources: all

potential 8.0 µm counterparts we considered are also detected in the 3.6 µm mosaic.
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Third, the 8.0 µm mosaics themselves are very deep – down to a 5σ point source sen-

sitivity of 5.8 µJy. We used two very simple models of star formation history to calculate

that this depth is easily sufficient to detect typical SCUBA galaxies. Both models (one a

constant star formation rate model, the other a burst) give approximately equivalent results

and suggest that at redshifts of z = 2−3 the 8.0 µm mosaics will detect star formation rates

of 120 ± 30 and 190 ± 40M¯ yr−1, respectively. This is comfortably below the rates found

for submm galaxies (up to roughly 103M¯ yr−1, e.g., Smail et al. 2004, Yun & Carilli 2002,

Lilly et al. 1999), so we can expect a priori that their 8.0 µm counterparts are detected in

the Spitzer data.

This paper describes the Spitzer observations, the 8.0 µm counterpart identification

procedure, and the inferences to be drawn from the panchromatic SEDs of infrared-selected

SCUBA counterparts. A companion paper (Dye et al. 2006) describes the inverse process,

whereby we determine the average submillimeter emission at the positions of the Spitzer

sources found in the field.

The next Section describes the Spitzer/IRAC and MIPS observations and presents in-

frared images at the known locations of the SCUBA galaxies. We then outline the scheme

used to identify the most-likely infrared counterparts of the submillimeter galaxies in Sec-

tion 3. The infrared properties of the likely counterparts are analyzed in Section 4.

2. Observations and Data Reduction

2.1. The IRAC Observations

The IRAC (Fazio et al. 2004) observations were carried out as part of Spitzer Guaranteed

Time Observing program number 8 to deeply image the Extended Groth Strip (EGS). The

first visit to the field was in 2003 December. The field was observed again during a second

epoch in 2004 June at a different position angle. The IRAC exposures (each of which covered

a 5.′12×5.′12 field of view with 256×256 pixels 1.′′2 in size) totaled 52 dithered 200 s exposures

at 3.6, 4.5, and 5.8 µm, together with 208 dithered 50 s exposures taken concurrently at

8.0 µm at all positions in a 2◦ × 10′ map. Each dither cluster was separated from its

neighbor by 290′′, slightly less than the IRAC field of view. Because the field was observed

at position angles differing by roughly 180◦ during the two epochs it was straightforward to

remove most of the well-known instrumental artifacts (multiplexer bleed, banding) during

mosaicing. The resulting point-source sensitivity was 24.0, 24.0, 21.9, and 22.0 mag (AB,

5σ), in the 3.6, 4.5, 5.8, and 8.0 µm bands, respectively. This corresponds to flux density

levels of 0.9, 0.9, 6.3, and 5.8 µJy in the four IRAC bands. All magnitudes given in this
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work are on the AB system.

Sources in the IRAC mosaics were identified and extracted using SExtractor (Bertin &

Arnouts 1996). The software was configured with a 2.5σ detection threshold and a minimum

object area of at least 5 pixels. The result was a band-merged photometric catalog of ob-

jects for all four IRAC wavelengths; photometry was performed using 3′′ diameter apertures

centered at the positions computed at 3.6 µm. All sources here are pointlike in the IRAC

bands. To permit comparison with total magnitudes in the other bands, appropriate correc-

tions were applied to obtain total magnitudes from the aperture magnitudes. The density

of 8.0 µm sources brighter than 5.8 µJy is roughly 11 per square arcminute.

2.2. The MIPS Observations

The MIPS (Rieke et al. 2004) observations of the EGS were carried out on 2004 June 19

and 20. The MIPS 24 µm channel (λ = 23.7µm; ∆λ = 4.7µm) used a 128×128 Si:As array

with a pixel scale of 2.′′55 pixel−1, providing a field of view of 5.′4×5.′4. The 70 µm channel

(λ = 71.4µm; ∆λ = 19µm) uses a 32×32 Ge:Ga array with a pixel scale of 9.′′98 pixel−1, but

one half of the array is not usable due to a high noise caused by a cabling problem. The

effective 70 µm array size is therefore 32 ×16 pixels, providing a field of view of 5.′2×2.′6.

The area was observed in scan map mode at slow rate with scan legs 2.◦4 long. Scan

map mode was used with the slow scan rate, which results in an integration time of 100

sec pixel−1 per scan pass (10 frames×10 s) at both 24 and 70 µm. In scan mode images at

these two wavelengths are obtained simultaneously. Pairs of scan map observations, with a

cross-scan offset of one full array (296′′), were executed 6 times, with an offset of 21′′ between

successive pairs. The effective integration time is therefore ∼1500 s (12 passes) at 24 µm for

locations near the long centerline of the strip, decreasing to ∼700 s 5 ′ from the centerline.

At 70 µm, the integration time is only half as much due to the loss of half of the detector

array.

The final scan maps cover an area 2.4◦×10′ with an integration time > 700 sec pixel−1.

A smaller 2◦×6′ strip in the center, encompassing most of the CUDSS field, was covered

with an integration time of 1300–1600 seconds.

The data were reduced and mosaiced with the MIPS Data Analysis Tool (Gordon et

al. 2005). The 24 µm scan images were resampled and mosaiced at half the original instru-

ment pixel scale (1.′′25) while at 70 µm the original pixel scale was preserved. The point

spread functions in the mosaics have FWHMs of 6′′ and 18′′ at 24 and 70 µm, respectively.

The resulting 5σ point source sensitivities are respectively 70 µJy and 7 mJy at 24 and
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70 µm.

2.3. Observations at Other Wavelengths

We have drawn from several pre-existing photometric catalogs in order to construct

SEDs spanning as large a wavelength range as possible for our counterparts. For the U,

B, V, and I band photometry, we used the Canada-France Deep Field Survey (McCracken

et al. 2001, hereafter CFDF) survey data. CFDF magnitudes are calculated within 2.5′′

diameter apertures. The 3σ CFDF limiting magnitudes are 27.71, 26.23, 25.98, and 25.16

mag in U, B, V, and I, respectively. At R we use the very deep image acquired at the Subaru

telescope with Suprime; our R-band photometry has a 5σ limit of 26.6 mag (Miyazaki et

al. 2006). For z-band we use the catalog constructed by Brodwin et al. (2006), converting

Vega to AB magnitudes by adding a constant 0.54 mag. The limiting magnitude of the

z-band data is 25.0 (3σ), within 2.5′′ diameter apertures. The K-band photometry data are

drawn from the observations described by Webb et al. (2003), converting to AB magnitudes

using KAB = KV EGA+1.91. They were measured within 3′′ apertures. Because the K-band

data were acquired at two facilities, the depth is nonuniform but it generally extends down

to ∼ 23 mag (3σ). All visible and near-infrared sources considered here are small compared

to the apertures used; we therefore treat the aperture magnitudes as total magnitudes.

Two of the submillimeter galaxies (14.13 and 14.18) have Infrared Space Observatory

(ISO) 15 µm fluxes reported in Flores et al. (1999). One of these (14.13) was observed using

Spitzer’s Infrared Spectrograph (IRS) in low-resolution mode by Higdon et al. (2004), who

also report a 16 µm flux density from the IRS Peakup Imager. Finally, we have also made use

of the Chandra X-ray Observatory (CXO) source catalog compiled by Nandra et al. (2005).

A montage showing our observations at R, 3.6, 4.5, 5.8, 8.0, and 24 µm at the locations

of each of the 23 SCUBA sources in the 14h field is provided in Figure 1.

3. The Mid-Infrared Identifications

3.1. The Identification Procedure

To avoid spurious sources we restrict our investigation to portions of the 14h field covered

by at least ten 8 µm IRAC exposures. With this constraint the IRAC coverage allows

counterpart identifications for 20 of the 23 SCUBA galaxies in this field.

We identify IRAC counterparts of the SCUBA sources using a two-part approach, con-
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sisting first of a proximity search of the IRAC 8.0 µm source catalog, followed by an exami-

nation of the infrared SEDs of all possible matches.

We first use a metric based on 8.0 µm brightness and positional coincidence to select

likely counterparts. We restrict the search to IRAC objects within 10′′ of each SCUBA source,

for several reasons. The primary motivation is to adopt a (conservative) value slightly larger

than the ∼ 8′′ uncertainty in the SCUBA positions, so as not to miss any true counterparts

that might lie at relatively large separations, while simultaneously avoiding such a large

value that we include a large number of unassociated foreground objects in the search. We

find that a 10′′ search radius often selected just one (or at most three) candidates, and was

therefore well-matched to our IRAC source density. Based on the source surface density

down to the 5σ limit of our survey, on average one IRAC 8 µm source should randomly

reside within each 10′′ radius search area.

Borys et al. (2004) found 11 counterparts within 7′′ of 19 submillimeter objects in the

Hubble Deep Field North, implying a substantial fraction may lie beyond this radius. Sim-

ilarly, Wang et al. (2005) identified five of their 20 X-ray counterparts and two of their six

mid-infrared counterparts to submillimeter galaxies in the same field at separations greater

than 7′′. By contrast Lilly et al. (1999) found at least 90% of the visible-wavelength counter-

parts to the submillimeter galaxies in the CUDSS 14h field are present within 7′′, but their

analysis includes only six sources. Our 10′′ criterion is also safely larger than the mostly-

likely average 850 µm-infrared offset of 2′′ determined from the stacking analysis discussed

by Dye et al. (2006).

All potential counterparts are listed in Table 1. In seven cases (see below) a single,

obvious best counterpart was identified. In instances where the identifications were not

clear-cut, we applied a second criterion based on infrared color to refine the identifications.

Specifically, we made use of K-band photometry from Webb et al. (2003) as well as our own

IRAC photometry to discriminate the most likely counterpart among multiple candidates. In

doing so, we made one important assumption. We a priori assumed, based on spectroscopic

studies (Chapman et al. 2003, 2005), that the true counterparts must reside at high redshift

and that the SEDs must be consistent with this fact. We applied color criteria developed by

Huang et al. (2004; see their Table 2), who use the K-to-IRAC colors to constrain a galaxy’s

redshift into local, intermediate, and high-redshift regimes. Those criteria are summarized

as follows: a blue K − [3.6] color corresponds to redshifts z < 0.6. Red K − [3.6] color is

consistent with either an intermediate (0.6 < z < 1.3) or high redshift (z >1.3), depending

on whether the mid-infrared [3.6]− [4.5] color is blue or red, respectively. In Section 3.2 we

make frequent use of this technique to select the best (highest-redshift) candidate among

multiple possibilities.
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Details of the identifications for these 20 accessible sources are provided in the following

Section.

3.2. Individual IRAC Identifications

Seven sources have secure identifications: 14.1, 14.3, 14.13, 14.17, 14.18, 14.19, and

14.23. Of these, all but 14.17 and 14.23 have relatively small position uncertainties. We

have possible identifications for ten others: 14.2, 14.4, 14.7, 14.8, 14.10, 14.12, 14.14, 14.15,

14.20, and 14.22. Because their infrared colors and R-band morphologies are not those of

dusty, high-redshift galaxies, we regard both potential 8.0 µm identifications for 14.11 as

dubious and do not include it in subsequent analysis. Likewise 14.6 and 14.21 which have

no significant 8.0 µm counterpart within 10′′ of the SCUBA positions.

3.2.1. Sources with Radio Identifications

Objects 14.1, 14.3, 14.13, and 14.18 have 1.4 GHz positions available from Fomalont et

al. (1991). A recalibration of the VLA data by M. Yun improved the effective beamwidth of

this dataset to 4′′ FWHM and resulted in a radio identification for 14.19 (Webb et al. 2003).

CUDSS 14.1. Our single 8.0 µm identification is coincident with both the Webb et

al. (2003) K-selected candidate and the I-selected candidate from Lilly et al. (1999) within

the positional uncertainties. There is also a MIPS 24 µm source at this position.

CUDSS 14.3. Our only 8.0 µm candidate is coincident with the Webb et al. (2003)

candidate as well as the position observed by Chapman et al. 2005, who used Keck to obtain

a spectroscopic redshift of z = 1.139 for this object. This object is also an obvious MIPS

24 µm source.

CUDSS 14.13. For this object the best candidates at K and 8.0 µm agree within the

positional uncertainties. This object is also source and was detected by ISO at 7 and 15 µm

at the same position. This is not surprising, because it is by far the brightest of all our

IRAC candidates. This object was also observed with the Infrared Spectrograph on the

Spitzer Space Telescope (Higdon et al. 2004) and exhibits a continuum slope consistent with

a Seyfert 2 nucleus and no PAH emission. Our best position is coincident with that observed

by Chapman et al. (2005), who used Keck to obtain a spectroscopic redshift of z = 1.150 for

this object; this places it in the lowest quartile of the submm galaxy redshift distribution.
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CUDSS 14.18. For this object our 8.0 µm search selects the same candidate as Webb

et al. found at K. This is identical to the I-selected candidate from Lilly et al. (1999) as

well. Within the positional uncertainties, all three positions (IRAC+K-selected+I-selected)

are also coincident with the ISO 7 and 15 µm detections. The 8.0 µm object is also a bright

24 µm source. Finally, the best IRAC position is coincident with that observed at Keck by

Chapman et al. (2005), who found a spectroscopic redshift of z = 0.661 for this object. This

is a surprisingly low redshift compared to most SCUBA sources.

CUDSS 14.19. For this object our 8.0 µm search selects a different best candidate than

at K. The IRAC candidate position lies just 2′′ from the radio position and is coincident

with significant 24 µm emission.

3.2.2. Secure Identifications for Sources without Radio Identifications

We identify what we believe to be ‘secure’ infrared identifications for two objects that

lack radio counterparts, 14.17 and 14.23.

CUDSS 14.17. Our 8.0 µm search selects a single best candidate and disagrees with

the K-selected candidate, which is not apparent in the mid-infrared mosaics. The 8.0 µm

candidate falls just 0.′′8 from the ISO detection and is detected by MIPS at 24 µm. Thus

despite the large offset (9.′′5) this identification appears secure.

CUDSS 14.23. Our 8.0 µm search selects two candidates. One (B) is fainter, blue in

[3.6]− [4.5], and offset 6.′′6 to the NE of the SCUBA position. The other, brighter source is

red in [3.6] − [4.5] and K − [3.6] and is a strong source of 24 µm emission. It is offset only

2′′ from the SCUBA position. For these reasons we prefer candidate A. It is the same as the

K-selected candidate from Webb et al.

3.2.3. Possible Identifications

We identify plausible infrared counterparts to ten sources, none of which has a radio

identification (but see discussion of 14.8 and 14.20 below).

CUDSS 14.2. Although we detect the Webb et al. (2003) candidate (14.2A in Table 1)

in all IRAC bands, we also find a closer, fainter IRAC object (B) only 2.′′1 from the reported

SCUBA position. However, candidate A is a source of MIPS 24 µm emission and is much

brighter at 8.0 µm. For these we adopt A as the more likely counterpart to 14.2. The Lilly

et al. (1999) I-selected counterpart, which is distinct from both the K- and IRAC-selected



– 10 –

positions, is not detected in the IRAC mosaic at 8.0 µm.

CUDSS 14.4. At 8.0 µm there are three possible counterparts. Of these, C is approxi-

mately coincident with the Webb et al. candidate. Object C is also the faintest of the three

candidates at 8.0 µm and shows no significant 24 µm emission. It shows blue K − [3.6] < 0

and [3.6]− [4.5] > 0 colors, suggesting this object resides at z < 0.6. Thus C seems unlikely

to be the correct counterpart. Object A presents a red [3.6]−[4.5] > 0 color, but theK−[3.6]

upper limit is not sufficiently sensitive to constrain the redshift. Object A is a MIPS 24 µm

source. Object B has no counterpart in the 24 µm catalog, but this is most likely because

it is blended with an even brighter object to the NW. However object B presents a blue

[3.6]− [4.5] > 0 color, suggesting it lies at z < 1.3. Thus candidate A seems the most likely

SCUBA counterpart among the IRAC sources, despite its relatively large separation (8.′′7)

from the SCUBA position.

CUDSS 14.7. There are two possible 8.0 µm counterparts within the 10′′ search radius.

One of them (A, the closer and fainter of the two) coincides with the Webb et al. (2003) K-

selected candidate. Although both are detected in all IRAC bands, only the southern source

(B, the one more distant from the reported SCUBA position) is unambiguously detected

by MIPS. The southern source exhibits multiple components in our deep R-band image. It

also has a redder [5.8] − [8.0] and [8.0] − [24.0] colors and is by far the brighter source at

8.0 µm. For these reasons we prefer candidate B. However, the SCUBA source is extended

toward both IRAC objects. In addition, both IRAC candidates have red K-to-4.5 µm colors

that suggest they both reside at z > 1.3. Thus while we prefer B we cannot rule out the

possibility that both objects may contribute to the submillimeter flux.

CUDSS 14.8. Our 8.0 µm search selects two candidates (A and B). There is emission

at the location of the K-selected candidate (B), but it is present at less than 5σ significance.

Candidate A is roughly 6.′′5 west of the best SCUBA position. There is 24 µm emission at

this position but not at the position of candidate B.

Interestingly, the K-selected candidate may be a source of radio emission (Chapman et

al. (2005) and a spectroscopic redshift z = 2.128 has been obtained for it. The radio detection

is regarded as somewhat marginal however (≈ 3σ, Chapman, private communication), and

so the association of candidate B with the SCUBA source is not established with certainty.

Object B is detected at 3.6 and 4.5 µm with flux densities of 5.4 and 5.6 µJy, respectively,

but it exhibits no significant emission at 5.8, 8, or 24 µm. Because B has a blue mid-infrared

SED and only A is significantly detected 8.0 µm, we prefer A as the counterpart. This object

has red K-to-4.5 µm colors that place it at z > 1.3, meaning it is possible that it could reside

at the same redshift as candidate B as part of an interacting system.
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CUDSS 14.10. Our 8.0 µm search selects a different best candidate (A) than Webb

et al. (B), 9.′′8 SW of the best SCUBA position. Candidate A shows K − [3.6] = 1.5 and

[3.6] − [4.5] = −0.04, suggesting it lies in the range 0.6 < z < 1.3. Candidate B, the K-

selected object, though closer to the SCUBA position (4.′′4 away), is almost 1 magnitude

fainter at K, is blue in [3.6]− [4.5], and exhibits no significant emission at 5.8, 8, or 24 µm.

Hence A is the more likely counterpart.

CUDSS 14.12. Our 8.0 µm diagnostic selects two candidates, neither of which is coinci-

dent with the K-selected candidate. The K-selected candidate is not detected in the 8.0 µm

mosaic. Candidate A lies 5.′′5 W of the SCUBA coordinates and exhibits significant 24 µm

emission. Neither A nor B is a source of significant 5.8 µm emission. Although B is brighter

at 8.0 µm than A, it exhibits no significant 24 µm emission. Hence A is the more likely

candidate, although the identification is by no means secure.

CUDSS 14.14. At 8.0 µm there are two candidates. Neither is coincident with the

K-selected candidate. Significant MIPS 24 µm emission is associated only with candidate B.

Likewise only this candidate has significant detections in all four IRAC bands. Furthermore,

only candidate B is red in [3.6] − [4.5]. Candidate B is our preferred counterpart on the

basis of its relative brightness, the IRAC colors, and the presence of 24 µm emission at its

position.

CUDSS 14.15. There are two possible 8.0 µm counterparts. One of these (A, the

brightest) is coincident with the best K-selected candidate and is a MIPS 24 µm source.

Candidate B, however, exhibits comparable 24 µm emission, has a red [3.6] − [4.5] color,

and has an SED that peaks at 5.8 µm, suggestive of a galaxy at z ∼ 2.5. Although A is

brighter at 8.0 µm, B is a more likely candidate because of these SED features. Perhaps

because the K-band coverage at this location is relatively shallow, only a K upper limit can

be determined for candidate B. The R-band source seen in Figure 1 close to the apparent

position of candidate B is not the visible-wavelength counterpart. Only upper limits could

be established in the bands blueward of I for this object.

CUDSS 14.20. The 8.0 µm search selects a different best candidate than Webb et al. .

The IRAC candidate is not detected in our deep R-band image or the Webb et al. I-band

image but is detected with K = 22.26 ± 0.06 mag. It therefore has red K-to-4.5 µm colors

that place it at z > 1.3. There is no significant MIPS 24 µm source within 10′′ of the SCUBA

position. Acquiring a visible-wavelength spectrum of this extremely optically-faint object

would be very challenging. As is the case for 14.8, we select a different position than preferred

by Chapman et al. (2005), who obtained a spectroscopic redshift of z = 2.128 for the K-

selected candidate, where they detect 1.4 GHz emission. However, the radio identification,

which is made at roughly 4σ significance (S. Chapman, private communication) may be
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incorrect.

CUDSS 14.22. The 8.0 µm search finds two candidates. One of these (A) is coincident

with the the K-selected candidate to the NW. Even though both are red in K−[3.6], the fact

that they are both blue in [3.6] − [4.5] suggests that they lie in a relatively nearby redshift

range 0.6 < z < 1.3 and that we may have not detected the true counterpart of this object.

However, only the southernmost candidate is a strong 24 µm source, so we regard it as the

more plausible IRAC counterpart.

For the sake of completeness, we examined the relatively faint 24 µm source apparent

in Figure 1 10.′′3 NNW of the SCUBA position, just outside the search radius. It is blue

throughout the IRAC bands and is a much weaker 24 µm source (232 µJy) than candidate B.

It is therefore likely to be a low-redshift object and not associated with the SCUBA source.

3.2.4. Failed Identifications

CUDSS 14.6. Despite the excellent IRAC coverage at the location of CUDSS 14.6 (a

total of 218 exposures), no sources in the IRAC 8.0µm mosaic satisfy our selection criteria

as a valid counterpart to CUDSS 14.6. Within 10′′ of the reported SCUBA position, and

specifically at the position identified by Webb et al. (2003), there is no significant 5.8, 8.0,

or 24 µm emission. Moreover, the K to 4.5 µm colors of the K-selected counterpart are blue,

suggesting that object lies nearby.

There is a faint source in the 8.0 µm mosaic within the 10′′ search radius, 8.′′5 to the

NE of the SCUBA position. However, its low flux density (5.5 µJy) puts it below the 5σ

sensitivity of the 8.0 µm mosaic. Like the K-selected counterpart it also has a blue K− [3.6]

color, implying that it resides relatively nearby. The object appears in three of the IRAC

mosaics (it is not apparent at 5.8 µm) and is therefore unquestionably real, but it is too faint

to satisfy our selection criteria.

A significant 8.0 µm detection (18 µmJy) is located just outside the search area, 10.′′1 to

the NE of the SCUBA position. It is red in K − [3.6] but exhibits a blue [3.6]− [4.5] color,

suggesting it lies at an intermediate (0.6 < z < 1.3) redshift and is therefore unlikely to be

the true counterpart.

Both of the 8.0 µm sources mentioned above are as likely as not to be due to chance

superposition. In combination with the color information this strongly suggests that no

plausible counterpart to the SCUBA source is present in the IRAC mosaics.

CUDSS 14.11. At 8.0 µm there are two indistinguishable best candidates, one of which



– 13 –

(B) is coincident with the K-selected candidate. Candidate A is closer to the SCUBA

position, only 2.′′6 away. Neither shows any significant 24 µm emission, and both exhibit the

morphologies of elliptical galaxies in our deep R-band image. Furthermore, the blue infrared

colors (K− [3.6] = −0.53,−0.60, and [3.6]− [4.5] = −0.48,−0.69) and R-band morphologies

are consistent with both objects being elliptical galaxies at z < 0.6. There is no significant

24 µm emission within 10′′ of the SCUBA position. For all these reasons, we conclude that

we have not detected the true counterpart to this SCUBA source. A speculative possibility

is that the 850 µm emission detected by SCUBA is lensed by the foreground, low-redshift

objects. The closest 24 µm source (176 µJy) lies 15.′′7 NE of the SCUBA position and has

blue colors throughout the IRAC bands.

CUDSS 14.21. There are no significant 8.0 µm sources within 10′′ of the SCUBA position

of this source. We therefore attempt no identification. There is significant 3.6 and 4.5 µm

emission at the location of the K-selected counterpart. This object is red in K − [3.6] but

blue in [3.6] − [4.5], suggesting that it may be at 0.6 < z < 1.3. At 5.8, 8.0, and 24.0 µm

only upper limits are available. We regard CUDSS 14.21 as unidentified at 8 µm.

Assuming that these sources are not highly dust-obscured galaxies at such extremely

high redshift (z > 6) that their obscured rest-visible emission falls in the observed mid-

infrared, we suggest three possible causes for the lack of plausible 8 µm counterparts. In

the case of CUDSS 14.11, it may be that the two foreground elliptical galaxies are screening

a high-redshift SCUBA source from view at visible-mid-infrared wavelengths. A second

alternative is that the submillimeter flux densities may include contributions from multiple

weak components that lie within the SCUBA beam but not precisely at the reported SCUBA

position. The SCUBA data are known to be highly confused. Weak submillimeter sources

that combine to yield an apparent SCUBA detection might well be individually too faint to

detect even in the deep IRAC mosaic. Third, one of the SCUBA sources might be spurious,

which would not be unreasonable given that the sample contains so many roughly 3σ sources.

CUDSS 14.6, 14.11, and 14.21 are detected in the 850 µm maps at the 4.2, 3.5, and 3.0σ

significance, respectively.

3.2.5. Objects with Insufficient Coverage

Three sources lie in a portion of the IRAC 8.0 µm survey region for which fewer than

10 exposures were acquired. For these sources (14.5, 14.9, and 14.16) the depth of coverage

was insufficient to reliably detect an infrared counterpart.
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3.3. Reliability of IRAC Detections

Excluding ‘dubious’ associations, potential counterparts for 17 of 20 SCUBA galaxies

having deep 8.0 µm coverage in the 14h field have been identified. Of these, the seven secure

identifications have a mean offset from the SCUBA positions of 4.4” and the ten possible

identifications have a mean offset of 7.7”. If one uses the available 1.4 GHz positions in

preference to the SCUBA positions only the mean offset for the set of secure identifications

changes (because no SCUBA sources with ‘possible’ identifications have radio positions), to

2.′′4. The mean offsets in right ascension and declination for the 17 counterparts are 2.′′5 and

0.′′9 (SCUBA - 8.0 µm), respectively. All these offsets are smaller than the SCUBA positional

uncertainties.

Of course, a small number of the 8.0 µm-selected counterparts are chance associations

and not physically associated with the corresponding SCUBA source. In the following we

address this issue in two ways. First, we derive an estimate of the number of such chance

associations using a statistical analysis. Second, we compare the infrared-submm colors of

our counterparts to those that have been reliably identified in a deep IRAC survey of the

Lockman Hole region by Egami et al. (2004).

We first employ a variant of the statistical formalism used by Lilly et al. (1999) and

others to assess the significance of possible matches. Specifically, we estimate a statistic,

usually denoted P , that a candidate IRAC source lies within the search distance (10′′) of

a SCUBA source to which it is unrelated. The statistic is P = 1 − exp(−πnr2), where

r = 10 and n is the surface density of IRAC sources at least as bright as the candidate.

Thus lower values of P suggest a higher likelihood that the association of the IRAC and

SCUBA sources is significant. Unlike Lilly et al. (1999) we treat all sources within the 10′′

search radius equally with respect to their offset from the SCUBA position. In doing so we

avoid unduly biasing our selection toward sources at small 8.0 µm offsets from the uncertain

SCUBA positions.

We use Webb et al. (2003) Table 1 for the SCUBA sources’ coordinates, except for

CUDSS 14.1, 14.3, 14.13, 14.18, and 14.19. The first four of these objects have VLA positions

(Eales et al. 2000) with lower uncertainties (roughly 2′′). Similarly, we adopt the radio

position reported for 14.19 by Webb et al. (2003), although it is offset from the nominal

SCUBA position by 8.′′5. We found no significant differences in our lists of most-likely

matches when we repeated the analysis using the less-certain SCUBA positions.

In order to interpret the P -values, we performed a Monte Carlo analysis in which

randomly-generated catalogs of IRAC sources were searched for counterparts in a man-

ner identical to that employed for the real sources. The random catalogs were constructed
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to present brightness distributions and source densities identical to those of the real cata-

log. The P -distributions for the random and real samples are compared in Figure 2. We

calculate the probability P ′ that a candidate is a random or unassociated counterpart as

P ′ = αP , where α is the ratio of the number of random sources with smaller values of P

than the candidate to the total number of random sources generated in the Monte Carlo

calculation. Although the P ′ statistics are not meaningful for individual sources, the sum

of the P ′ statistics tabulated in Table 1 is an estimate of the number of spurious identifica-

tions. We cannot say which particular identifications are wrong, but the sums for the seven

‘secure’ IDs and the ten ‘possible’ IDs are 0.61 and 2.61, respectively, implying that the bulk

of the errors apply to the latter subset, as one would expect. For the sample as a whole,

the sum is 3.22, suggesting that about three of our 17 identifications are incorrect. This

estimate (three false identifications) is a pessimistic one, because the probability formalism

from which it is derived does not account for our use of color information to winnow lists of

multiple candidates down to single most-likely counterparts. Three is in fact the maximum

number of likely false sources, because we have taken into account the K to mid-infrared

colors as well as the presence of 24 µm MIPS emission as identification criteria.

When the estimate for the number of spurious sources is subtracted, our identification

rate is (conservatively) 14/20, or 70%. This is comparable to or better than rates described

elsewhere. For example, Pope et al. (2005) reported a 72% recovery rate for SCUBA sources

in the GOODS-N field, although this figure doesn’t account for possible erroneous associa-

tions. Like Pope et al. (2005) we recovered essentially all the SCUBA sources with secure

radio positions (but see the discussions of 14.8 and 14.20 above). More straightforward

comparisons can be made with Lilly et al. (1999) and Webb et al. (2003), because the P ′

statistics they provide permit one to estimate the number of incorrect associations in a man-

ner identical to that applied to our own sample. Lilly et al. (1999) identified counterparts

for eight of the 12 submillimeter sources they observed at visible wavelengths. The sum of

the resulting P ′ statistics was ∼ 1, suggesting a total identification rate of 7/12 or 58%.

Likewise the Webb et al. (2003) K-band counterparts for which the P ′ statistics sum to ∼ 6,

implying a total identification rate of 17/23 or 74% (but see below).

Egami et al. (2004) presented mid-infrared through submillimeter flux densities mea-

sured by Spitzer for SCUBA sources in a 5′×5′ area of the Lockman Hole East. Because these

sources have radio counterparts from Ivison et al. (2002) their positions are well-localized,

and the mid-infrared identifications are secure. For this reason, the Egami et al. (2004)

submillimeter sample provides a useful basis with which to assess our own larger sample of

infrared-selected counterparts.

Figure 3 shows the distributions of submillimeter galaxies in the IRAC [3.6]−[4.5] versus
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[5.8]−[8.0] color-color space. The portion of this space occupied by the Lockman Hole sources

and the secure identifications of the CUDSS 14h field sources are approximately coextensive;

they define a locus in which other counterparts sources may be expected to fall. This is

indeed the case for the ‘possible’ sources taken as a group – the distribution of these objects

occupies a very similar region of this color-color space overall as do the secure sources.

In general, when the counterpart is bright, the K- and 8.0 µm-selected counterparts

are identical. However, the mid-infrared technique selects different counterparts than Webb

et al. (2003) in 10 cases (CUDSS 14.4, 14.7, 14.8, 14.10, 14.12, 14.14, 14.15, 14.19, 14.20,

and 14.22). The K- and 8.0 µm-selected techniques disagree for three additional cases

(CUDSS 14.6, 14.11, and 14.21) for which the mid-infrared technique identifies no plausible

counterparts. CUDSS 14.11 is a nearby elliptical galaxy and is therefore unlikely to be the

source of the submillimeter emission. CUDSS 14.6 and 14.21 have no plausible counterparts

in the 8.0 µm mosaics. The K- and 8.0 µm-selected counterparts therefore disagree in a

total of 13 cases (slightly more than half the total). With the exception of the counterpart

to CUDSS 14.7A (which as noted above may indeed be a contributor to the submillimeter

emission), the distribution of the K-selected sources is clearly blue in both colors compared

to the other objects. In particular it lies close to the region occupied by a passively evolving

elliptical galaxy. Only six K-selected counterparts are plotted because the remainder are

undetected at both 5.8 and 8.0 µm, however the [3.6]− [4.5] colors of all these other sources

tend to be similarly blue in [3.6] − [4.5] and not like the distributions of the secure IDs

(Table 1). We conclude that the 8.0 µm-selected counterparts are therefore more likely to

be the correct counterparts in these discrepant cases.

Figure 4 shows the same populations but in [24] − [850] versus [8.0] − [24] color-color

space. Again, the distributions of the Lockman Hole counterparts and the secure sources

from this work are similar. CUDSS 14.13 and 14.18 are understandable exceptions on account

of their relatively low redshifts. And as before, the ‘possible’ counterparts occupy a region

of this color-color space that is reassuringly similar to that of the secure sources. That is

not the case for the discrepant K-selected counterparts. These objects lie at the outskirts

of the secure counterparts’ distribution. Based on the Lockman Hole sources and the secure

8.0 µm-selected sources (not including CUDSS 14.13 and 14.18), one would expect the typical

[24] − [850] color of a SCUBA galaxy to be between 3 and 4 magnitudes. Not one of the

discrepant K-selected counterparts lies in this range, and indeed only one (14.15A) is even

detected at 24 µm.

Analogous trends are apparent in [3.6]− [8.0] versus [8.0]− [24] color-color space shown

in Figure 5. The secure 8.0 µm-selected sources occupy the same region of this color-color

space as the Lockman Hole sources, and that region is spanned by the possible 8.0 µm
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identifications. The low-redshift objects are not outliers in this distribution. As before, the

discrepant K-selected counterparts tend to be blue in [3.6] − [8.0] and with the exception

of 14.7A do not overlap with the securely identified counterparts; half of these discrepant

sources are so blue they are not even detected at 8 or 24 µm.

4. Discussion

4.1. SEDs of SCUBA Sources Detected by IRAC

Figure 6 shows the SEDs of our most-likely IRAC counterparts to the SCUBA sources

in this field, showing the diversity of spectral shapes present within the sample. The galaxies

divide roughly into two categories. The majority (12 objects) show evidence in the IRAC

bands for the 1.6 µm bump arising from the H− opacity minimum. In other words, these

objects appear to be powered primarily by stars and not by a compact object. CUDSS 14.18

is among these sources, in agreement with Chapman et al. (2005).

Four objects in the sample (sources 14.3, 14.7, 14.13, and 14.19) show the monotonically

rising SEDs indicative of AGN-dominated emission. These sources fulfill all three of the

IRAC-color AGN selection criteria proposed by Lacy et al. (2004), Stern et al. (2005), and

Hatziminaoglou et al. (2005). Source 14.4 has an unusual SED, very faint in the three

shortest-wavelength IRAC bands compared to the optical and 8 and 24 µm. This source

also has a monotonic rise through the IRAC bands, so we consider it a tentative AGN

candidate.

Simple color criteria developed from shallow IRAC surveys like those cited above are not

adequate to separate AGN from starburst galaxies at high redshift however. We therefore

chose to perform a simple SED fitting procedure to determine whether a galaxy is AGN-

dominated, in exactly the same way as Barmby et al. (2006) did for other sources in the

Extended Groth Strip.

Specifically, we fit power laws (fν ∝ να) to IRAC flux densities as an empirical way of

characterizing their SEDs. Seven sources have acceptable power-law fits. Source 14.14 has

a blue power-law (α ≈ +0.2), source 14.18 has α ≈ 0, and five others have good fits to red

power-laws. So all three X–ray/SCUBA sources (14.3, 14.7, and 14.13) have red power-laws,

as might be expected, as do two additional sources, 14.12 and 14.19. Source 14.4 does not

fit a power-law well because of a very steep rise in the SED at 8.0 µm.

In summary, the number of SCUBA counterparts apparently dominated by an AGN in

the mid-infrared could be as few as five (CUDSS 14.3, 14.7, 14.12, 14.13, and 14.19) or as
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many as six (if 14.4 is included). There could be others not detectable using our approach:

Barmby et al. (2006) found that not all (X–ray selected) AGN show clear mid-infrared

signatures.

Our classification of 14.13 as AGN-dominated agrees with Higdon et al. (2004) and

Le Floc’h et al. (2006), although Chapman et al. (2005) call it a starburst. Given the

small numbers involved, our finding that between five and six members of the sample are

AGN-dominated is not inconsistent with the assertion by Alexander et al. (2004) that “at

most 20%” of the luminosity of submillimeter galaxies arises from AGN. They found that

bright (F850µm > 5 mJy) SCUBA sources host AGNs at twice this rate (38%), although star

formation tends to dominate the energy output.

AGNs selected on the basis of the IRAC-MIPS SEDs show good agreement with AGNs

discovered on the basis of their X-ray emission. Four objects with secure mid-infrared AGN

signatures are X-ray sources (14.3, 14.7, and 14.19 are Nandra et al. 2005 objects c111, c113,

and c128 respectively; 14.13 is source c72 in the list of Nandra et al. and source 23 in Waskett

et al. 2003). CUDSS 14.12 and 14.4 (the tentative AGN candidate), show no X-ray emission.

Figure 7 shows the 850 µm flux density distribution of the 23 SCUBA galaxies. Our

17 counterparts span the full range occupied by the sample, including all of the brightest

SCUBA sources and all but one of the faintest. There is no evidence that our recovery

rate is biased toward either the high- or low-brightness SCUBA sources: a Kolmogorov-

Smirnov (KS) test indicates that the retrieved sources are drawn from the same sample as

the full sample of 23 SCUBA galaxies with better than 99.9% confidence. Furthermore,

AGN-dominated objects occupy the middle of the distribution, without any obvious skew

toward either the high- or low-brightness extreme of the distribution.

4.2. Infrared Colors of SCUBA Galaxies

The infrared color distributions of the IRAC counterparts to the SCUBA galaxies are

shown in Figure 8 and the means and dispersions are given in Table 3. Colors at longer

wavelengths present greater diversity (larger dispersions) both for the SCUBA counterparts

and for the full sample of all 8µm-detected galaxies in the field, but the color distributions

are consistently tighter for the counterparts. In particular, the counterparts do not overlap

the blue wings of the distributions of the field galaxies. The SCUBA counterparts are slightly

redder in the IRAC bands relative to the full sample of all IRAC galaxies in the CUDSS 14h

field. Although the difference in any one color is small, it amounts to nearly 1 AB magnitude

in [3.6]− [8.0]. This is unlikely to be a selection effect. The seven counterparts (14.1, 14.3,
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14.13, 14.17, 14.18, 14.19, and 14.20) identified without recourse to any color criteria show

no significant color differences from the larger sample.

Given the dispersions, the differences in mean colors between SCUBA galaxies and field

galaxies are only marginally significant. The KS test, however, is sensitive to the lack of blue

galaxies in the counterpart sample. It shows that the color distributions are significantly

different: the KS-derived probabilities that the [3.6]− [4.5], [4.5]− [5.8], and [5.8]− [8.0] color

distributions of the SCUBA galaxies and field galaxies are drawn from the same samples are

6× 10−4, 10−2, and 5× 10−2, respectively.

Figure 9 shows the [8.0] - [24.0] and K - [3.6] color distributions for the IRAC-detected

galaxies in this field. Both distributions exhibit much larger dispersions than the IRAC-only

colors plotted in Figure 8. Despite the fact that in some cases the IRAC counterpart was

selected on the basis of the presence and/or strength of MIPS 24 µm emission, there are no

significant differences in the mean [8.0] - [24.0] colors or dispersions of the full sample and

the counterparts. The K - [3.6] color distributions are likewise indistinguishable (given the

wide range of colors exhibited by the sample). When we compare the color distributions

using the KS test we find no evidence that the samples are different. A comparison of the

IRAC-selected catalog of 726 sources (where a flux equal to the MIPS detection limit of

70 µJy has been assigned to all sources not detected at 24 µm) to the 17 IRAC counterparts

yields a KS statistic of 0.16 and a probability of 79% that the samples are drawn from the

same underlying distribution. Similarly, a comparison of the MIPS-selected catalog (all 368

MIPS 24 µm sources brighter than the 70 µJy detection limit) to the IRAC counterparts

yields a KS statistic of 0.14 and a 90% probability that the distributions being drawn from

the same population. Stated another way: there is no evidence to suggest that the full and

counterpart samples are different in K - [3.6] or [8.0] - [24.0] color.

5. Summary

Deep IRAC mosaics identify infrared counterparts for 17 of 20 SCUBA galaxies in the

CUDSS 14h field. The recovery rate of SCUBA galaxies at 8.0 µm is comparable to or better

than that found in other counterpart surveys, once the likelihood of mistaken identifications

is estimated (three or fewer for the current work). For more than half of the sample, the

most-likely 8.0 µm counterpart is different than the K-selected counterpart. Multiband

IRAC-MIPS SEDs allow one to identify unlikely candidates in the SCUBA beam (e.g.,

elliptical galaxies) and avoid them. This suggests that the mid-infrared regime in general

(and the IRAC 8.0 µm band in particular) offers a more reliable means than ground-based

optical or near-infrared surveys for identifying the true counterparts to the high-redshift,
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dusty starforming galaxies detected in submillimeter surveys.

On the basis of power-law fits to the infrared IRAC-MIPS SEDs we infer that four of

the counterparts are AGN-dominated, and that up to two additional sources also appear to

harbor an active nucleus.

The 8.0 µm counterparts have redder infrared colors than the general population of

IRAC-detected galaxies in the field. Five counterparts have IRAC-MIPS SEDs that are fit

well by red power laws and are likely to be AGN-dominated. One more is fit well by a

slightly blue power-law and may also harbor an active nucleus. Four of these six objects

are detected in X-ray observations, lending further support to the AGN hypothesis. The

remaining counterparts are likely to be dominated by starburst emission.
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operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA

contract 1407. Support for this work was provided by NASA through Contract Number
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distributed by the National Optical Astronomy Observatories, which are operated by the
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Fig. 1.— R+IRAC mosaics at the positions of SCUBA sources 1-8 in the 14h field. Each

image is 40′′ across and centered at either the SCUBA position (most sources) or the 1.4 GHz

radio position where available (sources 14.1, 14.3, 14.9, 14.13, 14.18, and 14.19). Circles of

10′′ radius have been drawn to indicate the area searched for IRAC counterparts. Proceeding

from left to right, the columns contain images taken at R, 3.6, 4.5, 5.8, 8.0, and 24 µm. Circles

of diameter 2′′ and 3′′ in the R-band images respectively indicate the locations of the K-band

and 8.0 µm counterparts.
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Fig. 1.— Continued. R+IRAC mosaics for SCUBA sources 9-16 are shown.
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Fig. 1.— Continued. R+IRAC mosaics for SCUBA sources 17-23 are shown.
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Fig. 2.— The distribution of P-values measured for IRAC 8.0 µm-selected counterparts to the

SCUBA sources in the Groth Strip. The shaded histogram indicates the distribution derived

from matches using the real IRAC catalog. The clear histogram shows the P -distribution

derived from matches to sources at random positions.
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Fig. 3.— The [3.6] − [4.5] versus [5.8] − [8.0] colors for the IRAC and K-selected coun-

terparts to submillimeter galaxies. Solid circles represent radio-detected SCUBA galaxies

in the Lockman Hole for which secure identifications have already been established (Egami

et al. 2004). Secure IRAC identifications for SCUBA galaxies in the CUDSS 14h field are

indicated with solid and open squares for objects respectively with and without 1.4 GHz de-

tections. Diamonds indicate the ‘possible’ IRAC identifications discussed in the text. Open

circles represent K-selected counterpart identifications that are different than the most-likely

IRAC counterparts.
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Fig. 4.— The [24]− [850] versus [8.0]− [24] colors for the IRAC counterparts to the submil-

limeter galaxies. Symbols as in Figure 3.
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Fig. 5.— The [3.6]− [8.0] versus [8.0]− [24] colors for the IRAC 8.0 µm counterparts to the

submillimeter galaxies. Symbols as in Figure 3.
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Fig. 6.— Panchromatic UBVRIzK + IRAC + MIPS 24 µm SEDs for the preferred IRAC

counterparts of the submillimeter galaxies in the 14h field. Sources with secure identifications

are plotted in panel a with solid lines. The ‘possible’ identifications (see Section 3.2) are

shown in panel b with dashed lines. Triangles indicate upper limits. For CUDSS 14.13 in-

cludes the IRS 16 µm Peakup Imager flux density 3.6 mJy as well as the IRS long-wavelength

low-resolution spectrograph spectrum from Higdon et al. (2004), and the ISO 15 µm magni-

tude from Flores et al. (1999). All other SEDs are offset by arbitrary amounts for illustrative

purposes; the offset amounts are 0, 1, 7, 9, 11 14, and 16 mag for sources 14.13, 14.3, 14.18,

14.17, 14.19, 14.1, and 14.23, respectively, in panel a. Similarly, in panel b the offsets are -4,

-1, 1, 4, 6, 7, 9, 12, 14, and 17 mag for sources 14.4, 14.7, 14.14, 14.8, 14.15, 14.12, 14.20,

14.10, 14.2, and 14.22, respectively. The top two spectra in each panel (14.13 and 14.3 in

panel a; 14.4 and 14.7 in panel b) are classified as AGN-dominated based on either their

IRAC colors or on the monotonic increase in magnitude with wavelength seen through the

IRAC bands.
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Fig. 7.— Histogram showing the 850 µm flux density distribution in mJy for the 23 SCUBA

sources in the 14h field. The shaded portion of the histogram represents the 17 objects for

which we have identified IRAC counterparts to the submillimeter sources. The black portion

of the histogram includes only those five sources we call AGN-dominated on the basis of the

IRAC-MIPS SEDs alone (14.3, 14.7, 14.12, 14.13, and 14.19).
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Fig. 8.— Histograms showing the distributions of IRAC colors for the submillimeter galaxies’

counterparts relative to those of all 8µm-detected galaxies in the 14h field. Top panel: [3.6]−

[4.5] color. The 17 IRAC counterparts lie under the shaded histogram and are referenced

to the right-hand vertical axis. The field galaxy sample lies under the unshaded histogram

and is referenced to the left-hand vertical axis. The dotted and dashed lines indicate the

mean colors for the all 8 µm-detected galaxies and the counterpart sample, respectively.

Center and bottom panels show the distributions of the [4.5]− [5.8] and [5.8]− [8.0] colors,

respectively. In all panels the doubly-hatched histogram indicates the distribution of a

counterpart subsample consisting of the seven objects for which no color criteria were used

to identify a counterpart.
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Fig. 9.— Upper panel: The distributions of [8.0] − [24] colors for the IRAC-selected coun-

terparts in the 14h field (shaded histograms, referenced to the right-hand vertical axis) and

those of the full sample of all 8µm-detected IRAC galaxies. The latter lie under two unshaded

histograms referenced to the left-hand axis; the lower histogram indicates the distribution

only for galaxies with significant MIPS 24µm detections. The upper unshaded histogram

represents all 8µm-detected galaxies but uses 24 µm upper limits where detections are un-

available. The counterpart subsample under the doubly-hatched histogram consists of the

seven objects for which no color criteria were used to identify a counterpart. The dotted

and dashed lines indicate the mean colors for the full sample and the counterpart sample,

respectively. Lower panel: Symbols as for the upper panel, but showing the distributions of

K - [24] colors for the IRAC-selected counterparts (shaded histograms) and those of the full

sample of 8 µm-detected galaxies (unshaded histogram).
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Table 1. All Candidate IRAC 8.0 µm Counterparts to SCUBA Sources

SCUBA F3.6 F4.5 F5.8 F8.0 F24.0 R.A. Decl. Offset a P′

Name (µJy) (µJy) (µJy) (µJy) (µJy) (J2000) (arcsec)

†14.1b 40.7 44.8 32.5 41.1 191 14 17 40.22 52 29 06.5 1.07(0.28) 0.11
†14.2 A 38.5 45.0 41.5 27.0 150 14 17 51.33 52 30 24.9 6.55 0.18

14.2 B 2.0 3.3 5.5 8.6 < 70 14 17 51.93 52 30 30.8 2.12 0.45
†14.3b 35.0 41.0 48.6 48.4 408 14 18 00.58 52 28 21.3 0.87(2.32) 0.078
†14.4 A 2.7 3.6 5.2 27.2 239 14 17 43.43 52 28 05.8 8.71 0.18

14.4 B 52.8 49.2 40.7 40.9 · · · 14 17 42.41 52 28 11.6 9.07 0.11

14.4 C 7.4 8.7 9.5 6.2 < 70 14 17 43.80 52 28 16.8 4.71 0.52

14.6 1.8 1.8 < 6.3 5.5 < 70 14 17 57.02 52 29 14.7 8.50 0.51

14.7 A 8.4 10.6 11.7 12.9 < 70 14 18 00.95 52 29 50.0 1.68 0.35
†14.7 B 5.3 10.6 20.2 51.3 150 14 18 01.15 52 29 42.0 7.02 0.071
†14.8 A 21.4 24.5 24.7 15.3 275 14 18 02.01 52 30 16.3 6.43 0.31

14.8 B 5.4 5.6 4.9 2.9 < 70 14 18 02.70 52 30 10.4 5.25 0.76
†14.10 A 50.1 48.4 34.8 38.3 307 14 18 03.00 52 29 33.2 9.81 0.12

14.10 B 4.3 3.2 < 6.3 < 5.8 < 70 14 18 03.98 52 29 40.6 2.20 0.86

14.11 A 153.6 99.5 66.7 36.0 < 70 14 17 46.89 52 32 36.1 2.69 0.13

14.11 B 225.3 140.8 92.7 50.3 < 70 14 17 47.32 52 32 42.1 4.60 0.075
†14.12 A 3.7 5.7 < 6.3 8.0 80 14 18 04.70 52 28 56.0 5.48 0.47

14.12 B 3.1 4.2 < 6.3 18.3 < 70 14 18 05.69 52 29 03.3 8.60 0.33
†14.13b 580.1 981.7 1448.5 2225.5 5646 14 17 41.88 52 28 23.5 0.67(6.46) 0.0013

14.14 A 9.9 8.3 3.4 6.2 < 70 14 18 09.06 52 31 00.5 4.78 0.52

14.14 B 9.4 10.7 7.8 6.9 120 14 18 08.21 52 31 08.1 6.16 0.50

14.15 A 30.8 26.7 19.7 17.1 103 14 17 29.87 52 28 21.5 5.83 0.28
†14.15 B 7.4 10.8 15.3 12.1 93 14 17 28.44 52 28 19.8 7.90 0.37
†14.17 47.1 47.0 34.6 77.0 266 14 17 24.44 52 30 46.1 9.48 0.049
†14.18b 159.7 138.1 143.0 164.7 1078 14 17 42.11 52 30 25.7 0.61(1.51) 0.029
†14.19c 15.3 20.6 21.1 25.2 84.0 14 18 11.26 52 30 12.3 2.33(8.59) 0.20
†14.20 18.5 21.2 18.6 13.9 < 70 14 17 50.51 52 30 55.2 8.87 0.34

14.22 A 29.2 28.1 19.6 19.1 < 70 14 17 55.08 52 32 08.4 7.91 0.25
†14.22 B 72.1 66.7 49.1 50.3 500 14 17 56.80 52 31 57.8 9.94 0.075
†14.23 A 31.7 43.4 47.1 34.0 529 14 17 46.21 52 33 22.2 1.97 0.14

14.23 B 21.4 17.5 20.1 20.1 < 70 14 17 46.68 52 33 29.6 6.60 0.24

aOffsets to SCUBA positions given in parentheses where 1.4 GHz data are available.

bCounterpart search based on 1.4 GHz detections from Eales et al. (2000).

cCounterpart search based on 1.4 GHz position reported by Webb et al. (2003).

Note. — The best 8 µm candidates are indicated with † (see text). Flux density upper limits given are 5σ point

source sensitivities. Positions are measured in the IRAC 8.0 µm mosaic and have roughly 0.′′3 uncertainties. Units

of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.
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Table 2. Ground-Based Data for Best 8.0 µm Counterpart Candidates

Candidate U a B a V a R b I a z c K d Redshift

14.1 27.17±0.32 26.60±0.12 26.28±0.11 26.6±0.1 24.71±0.05 24.79±0.34 21.18±0.05 · · ·

14.2A 28.0±0.6 25.9±0.1 26.64±0.07 24.94±0.06 25.0±0.05 · · · 21.4±0.1 · · ·

14.3 24.71±0.06 24.55±0.05 24.06±0.05 24.97±0.06 23.20±0.05 22.78±0.05 21.23±0.05 · · ·

14.4A 22.71±0.05 22.60±0.05 22.70±0.05 21.74±0.02 22.37±0.05 > 25.0 > 21.0 · · ·

14.7B 24.53±0.06 23.64±0.05 23.41±0.05 23.5±0.05 23.49±0.05 · · · 22.5±0.2 · · ·

14.8A 25.93±0.13 25.48±0.05 24.96±0.05 25.0±0.1 24.58±0.05 24.24±0.20 21.5±0.1 e

14.10A 27.29±0.34 26.74±0.13 27.01±0.23 25.7±0.1 24.65±0.05 23.83±0.14 20.8±0.1 · · ·

14.12A > 27.71 > 26.23 27.60±0.37 26.4±0.2 25.54±0.09 > 25.0 > 23.1 · · ·

14.13 23.93±0.05 23.73±0.05 22.90±0.05 22.02±0.02 20.86±0.05 20.39±0.05 18.5±0.1 1.150

14.14B 24.80±0.07 24.32±0.02 24.02±0.02 23.76±0.07 23.53±0.02 22.99±0.11 22.0±0.2 · · ·

14.15B > 27.71 > 26.23 > 25.98 > 26.6 25.13±0.06 · · · > 21.5 · · ·

14.17 23.84±0.05 23.11±0.05 22.29±0.05 21.69±0.02 21.13±0.05 21.00±0.05 19.7±0.1 · · ·

14.18 22.97±0.05 22.57±0.05 21.99±0.05 21.36±0.02 20.61±0.05 20.56±0.05 19.7±0.1 0.661

14.19 26.57±0.19 24.95±0.03 24.36±0.03 24.1±0.04 24.08±0.05 24.10±0.18 21.7±0.1 · · ·

14.20 > 27.71 > 26.23 > 25.98 27.7±0.6 25.63±0.65 25.83±0.88 21.6±0.1 e

14.22B > 27.71 > 26.23 > 25.98 24.83±0.07 23.55±0.1 · · · 20.19±0.1 · · ·

14.23A > 27.71 26.75±0.15 26.57±0.16 27.7±0.6 25.09±0.07 25.53±0.67 20.9±0.2 · · ·

Note. — All magnitudes are given on the AB system. Sources of the data: a CFDF (McCracken et al. 2001); b Miyazaki

et al. (2006); c Brodwin et al. (2006); d K-band survey of Webb et al. (2003); e Chapman et al. (2005) report a spectroscopic

z = 2.128 for galaxies near but distinct from these positions.

Table 3. Mean Infrared Colors of IRAC-Selected Galaxies in the CUDSS 14h Field.

Sample N K-[3.6] [3.6]-[4.5] [4.5]-[5.8] [5.8]-[8.0] [8.0]-[24]

8 µm Galaxies 726 0.8± 1.2 −0.1± 0.4 −0.1± 0.6 0.0± 0.5 1.9± 0.7

8 µm Counterparts 17 0.7± 0.8 0.2± 0.2 0.0± 0.3 0.2± 0.6 2.1± 0.7

Counterparts Subsample 7 1.0± 0.5 0.2± 0.2 0.0± 0.3 0.2± 0.4 1.6± 0.4


