Outflows studies since 1990

Optical image of BHR71 by Alves et al. (at ESO)
Outflows important to cores because they are formed close to protostar

Magnetocentrifugally Driven Flows from Young Stars and Disks I – V
Shu et al. 1994a,b; Najita & Shu 1994; Ostriker & Shu 1995; Shu et al. 1995

Banerjee & Pudritz 2006

Pudritz & Norman 1983

Shang et al. 2006
Connecting accretion, winds and observations of molecular outflows

Physical model of molecular outflows as a natural consequence of star formation
Shu et al. 1991 (wind occurs as a natural consequence of accretion)
Outflows:
• Signal the formation of a protostar
• Interact with parent core

Outflow interaction at many scales

From Matt & Pudritz (2005)
Outflows for classifying protostars

The case of L1211

MMS1 clearly drives powerful outflow, but no IR source. Source must be Class 0.

Class 0 term had been just been coined by André et al. 1993

Tafalla, Myers, Mardones & Bachiller 1999
Outflows for determining source’s stage

The case of L483

CO outflow slow and not as chemically active as other Class 0 sources. Source in between Class 0 and Class I.

Tafalla, Myers, Mardones & Bachiller 2000
Outflow reveals protostar: a binary in BHR71

Optical image: Alves et al. (ESO)

Spitzer image: Bourke & c2d team

Bourke 2001
Outflow confirms source:
L1014 “starless” no more

VeLLO (Very Low Luminosity Objects)
new kind of objects discovered by Spitzer Space Telescope

Outflow helped established 1014-IRS NOT a background source associated with dark cloud (Bourke et al. 2005)
Why was Phil not *that* interested in outflows after DCDC V (Myers et al. 1988)?

A SEARCH FOR MOLECULAR OUTFLOWS TOWARD PRE–MAIN-SEQUENCE OBJECTS

Russell M. Levreault
Department of Astronomy and Electrical Engineering Research Laboratory, University of Texas at Austin;
and Harvard-Smithsonian Center for Astrophysics
Received 1987 June 3; accepted 1988 January 11

ABSTRACT

We have conducted a search for molecular outflows toward a sample of 71 young stellar objects, a sample dominated by optically selected pre–main-sequence stars. Molecular outflows have been detected toward 20 of these objects and in an additional six infrared sources not included in the original survey. The outflows range in size from 0.07 to ~ 5 pc, and show expansion velocities of from 6 to 60 km s⁻¹. The apparent ages of the outflows range from ~10³ to 5 × 10⁵ yr. Roughly half of the observed outflows are bipolar; the rest show a wide variety of morphologies. The morphologies of the better resolved outflows are discussed in detail. The high signal to noise CO J = 2 → 1, CO J = 1 → 0, and ¹³CO J = 1 → 0 line profiles are used to determine line intensity ratios for the high-velocity emission. In most cases the ratios are consistent with modestly optically thick CO emission, although several examples of optically thin emission are seen. The opacities are combined with the observed line strengths to derive masses for the high-velocity material: the results range from 0.01 to 56 M☉. Uncertainties in the derivation of these masses, as well as the outflow expansion velocities and apparent ages, are discussed. It is shown that outflows driven by low-luminosity objects tend to be more bipolar than those driven by high-luminosity objects. The implications for our data on the structure of molecular outflows is also considered.

Subject headings: interstellar: molecules — stars: mass loss — stars: pre–main-sequence

A large body of data taken and interpreted in a uniform way should provide the common ground necessary to tie molecular outflows into present ideas of the framework of pre–main-sequence stellar evolution.
Outflow interaction with cores: L43

Mathieu, Myers, Schild, Benson & Fuller 1988

L43 - an example of interaction between molecular outflows and dense cores

Class II source with a very wide (≈160°) opening angle.

Notice wide outflow cavity with less extinction

Lee et al. (2005), using BIMA
Outflows and cores: Anatomy of the Barnard 5 Core

Fuller et al. 1991

Heyer, Ladd, Myers & Campbell 1990

Velusamy & Langer 1998

The observed correlation of cometary reflection nebulae with newborn stars undergoing mass outflow suggests that the low-opacity paths are cavities associated with energetic stellar winds.
Impact of outflows on cores: L1228

Velocity Shifts in L1228: The Disruption of a Core by an Outflow

Tafalla & Myers (1997)

13CO(1-0) velocity map

<table>
<thead>
<tr>
<th>Blue</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.4 pc

Red + blue contours: CO(1-0) outflow

Results:

13CO outflow:

- 6x Mass
- 2x Mom
- 0.5x K.E. of 12CO flow

Essential to map 13CO to get full impact of flow on cloud
L1228 CO outflow at high-resolution

Tafalla & Myers (1997)

Arce & Sargent (2004)
Our changing view of HH flows

Before 1990’s, HH flows were thought to extent less than ~0.5pc

mid to late 1990’s- wide-field CCD camera surveys of star-forming regions: giant HH flows discovered

(e.g., Eislöffel & Mundt 1997; Reipurth et al. 1997)
Impact of giant outflows on cloud:

- Outflows can affect density structure of cloud by pushing gas around (e.g., producing cavities and shells)
- Outflows impact kinematics of cloud
- Energy enough to disrupt cloud or drive turbulence within ~2 pc region
Evolu9on of cores form single pointing observations

Ladd, Fuller & Deane 1998

Fuller & Ladd 2002

• Decrease in core mass with time (i.e., evolutionary stage) due to outflow and infall
• Find broad component in C18O spectra of core that traces outflow–core interaction contain sufficient energy to clear core in $\sim 10^5$ yr
The core-outflow-phil connection

Phil-related outflow studies

High-res mapping of individual outflows

OVRO survey + outflows from lit.

Opening angle increases with time

Legend:
- Class 0
- Class I
- Class II
- From literature

Mathieu et al. (1988)

Lee et al. (2005)

Arce & Sargent (2006)

Outflows play crucial role in evolution of envelope

Evans et al. (2009)

Myers 2008

Protostar Mass due to Infall and Dispersal
(outflow impacts final mass of star, like in Adams & Fatuzzo 1996)

Lee et al. (2005)

Velusamy & Langer 1998

Arce & Sargent (2004)

Tafalla & Myers (1997)

Fuller et al. (1991)

B5-IRS1

L1228

 OVRO
survey+
outflows
from
lit.
More outflow-related work associated with Phil

PROSAC – PROtostellar Submillimeter Array Campaign

Jørgensen, Bourke, Myers et al. 2007

- Outflows play important role in structure of envelope
- Shocks present in all scales, traced by CH$_3$OH and other mol.
- Rich chemistry of hot corinos may be due to outflow shocks
Complex Molecules in Outflows

• $\tau_{\text{shock}} \sim 10^3$ yr indicates that complex species formed in the surface of grains and were then ejected from the grain mantles by the shock.

• The formation of complex molecules on grains of low-mass star forming regions must be relatively efficient.
More outflow-related work associated with Phil

Before 1995:
Herbig (1974)
Aspin et al. (1994)

Mid 1990’s:
Bally et al. (1996)

Today:
Gutermuth, Myers et al. (2008)
Outflows – future work

NGC 1333 has inspired theorists to study outflow-induced turbulence

Simulations by Jonathan Carroll (and U. Rochester group led by Adam Frank), see Carroll et al. (2009)

Myers, Goodman, Arce recently started collaboration with U. Rochester group led by Adam Frank on simulation of outflows and their impact on cloud

Other groups include: Nakamura & Li 2007 Matzner 2007
Outflows – future work

Outflow interactions with circumstellar environment: Cores and envelopes (~10^4 AU) are primary mass reservoirs of forming stars. Outflows may perturb envelope, affecting mass-assembly and final mass of star (Adams & Fatuzzo 1996; Myers 2008).

- Outflows may be (one) way to get from CMF → IMF?

Figure from Nutter & Ward-Thompson (2007)
See also:
Alves et al. (2006)
Enoch et al. (2008)
Rathborne et al. (2009)
and others...
L1228 12CO(1-0) outflow

Arce & Sargent (2004)
Outflow-envelope interactions in L1228

Extended infalling envelope traced by HCO+