
8. Atmospheric Scattering 
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 single scattering albedo (SSA). 

 
As before, except for polarization (which is quite important, although we largely neglect 
it), extinction, SSA, and the scattering phase function  completely describe a scattering 
event. For single scattering problems it is all that is needed. 
 
For scattering in general, there is an electric interaction (complex, with the dielectric and 
optical properties of the scatterer) involving electromagnetic induction and re-radiation. 
 
Rayleigh scattering ( )scattererr   for a spherical molecule (i.e., an atom) 
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The induced dipole moment re-radiates. Consider the polarization of the input and 
scattered light (N.B., solar radiation is unpolarized to a very high degree of accuracy): 
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                         IV  IH                      
                I0                                          V = vertical, H = horizontal, S = scattered 
 
For IV,  = constant (isotropic in the plane), vertically polarized 
For IH, 2cos ,  null at /2, horizontally polarized, or: 
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        Perpendicular to the plane of the paper, the opposite holds. 

In general, the output intensities for scattering in the plane are proportional to: 
 

 V in H in Unpolarized in
V out 1 0 1 
H out 0 cos2 cos2 
Total out 1 cos2 1 + cos2 

 



As before, 
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wavelength in m, and Q is in cm2. 
 

The analytic form is 
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  where the polarizability  is (usually) quite weakly 

dependent on wavelength, except at wavelengths where electronic states of the atom or 
molecule are being excited (e.g., below 242 nm for O2). 
 
In cgs units, the permittivity of vacuum 0 1/ 4 .   The cross section above is thus the 

same as Bernath, eq. 8.70: 
3 2

2 4
0

8
.

3R

P
Q

I

 
 

   The permittivity of vacuum (AKA 

permittivity of free space) from Wikipedia is a physical quantity that describes how an 
electric field affects and is affected by a dielectric medium, and is determined by the 
ability of a material to polarize in response to the field, and thereby reduce the total 
electric field inside the material. Thus, permittivity relates to a material’s ability to 
transmit (or “permit”) an electric field. Permittivity is directly related to electric 
susceptibility. For example, in a capacitor, an increased permittivity allows the same 
charge to be stored with a smaller electric field (and thus a smaller voltage), leading to an 
increased capacitance. 
 
Bernath derives the Rayleigh cross section in eqs. 8.65-8.69 by taking the power emitted 
by a classical oscillating dipole moment and dividing by the power driving it: 
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 The power emitted is 
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 as given. Bernath notes that the equation for radiated power 

was discussed in his Chapter 1, but you won’t actually find it there specifically. However, 
it agrees, by implication, with the derivation in Goody & Yung: 
 
Goody & Yung (Sections 7.1 through 7.3) actually does a complete derivation except 
that the most critical part is presented rather than developed. This is that for scattering by 
small particles ( )r   for propagation to “longer” distances ( ),d  the electric field 

components are given by
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   where 0E  and ,l r is the angle 

between μ and the direction of observation (see Figure 7.2). 
 
Then, employ the Poynting vector, S


which measures the energy flux carried by an 

electromagnetic wave (in cgs units, 
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 (erg s-1 cm-2)) to determine radiated 

power versus direction, integrate over a sphere, and get total power emitted, as above, 
and the cross section (eq. 7.30). 



9. Rayleigh scattering with depolarization 
 
In general, the polarizability is not isotropic. For diatomics such as N2 and O2 (i.e., “air”) 
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 (a measure of the effect of anisotropy on the spectrum) is defined as 
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The corresponding depolarization factor or ratio, defined as the ratio of the horizontally 
polarized component to the vertically polarized component of the scattered light for 

unpolarized input at 90o scattering angle in the horizontal plane, is given by 
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The induced dipole moment allows rotational Raman transitions – Raman scattering is 
simple the inelastic part of Rayleigh scattering. 
 
The rotational Raman transitions usually have selection rules 2J    (as opposed to the 
usual 1J    for electric dipole transitions). 

2J    Stokes transitions; I0 loses energy to molecule. 
2J    anti-Stokes transitions; I0 gains energy from molecule. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
(polyatomics are naturally more complicated) 
 
Because molecules rotate before re-emitting, the scattered radiation is less polarized (but 
not completely unpolarized). 
 
Complete intensities, 

2 2
ˆ, , ( ), ( )N O RQ n     (the last two pre-Bodhaine) and polarized 

scattering phase functions are described in Chance and Spurr, 1997 
(http://cfa-www.harvard.edu/atmosphere/) and given in ringdata.txt. Also, see table, 
below. 
 
Vibrational Raman scattering is in general much weaker and less important in 
atmospheric scattering, but it is not entirely absent. Here, the transitions are almost 
entirely Stokes. (See why?) 
 
Also, liquid water (i.e., in the oceans) can be important, for ocean color sensing. Here it is 
mostly due to librational Raman (intermolecular transitions). Raman scattering from sea 
ice may prove useful in the future. 
 
For air, at wavelengths 300 nm    500 nm, 3.8% of Rayleigh scattering is inelastic 
(Raman) scattering. Since the Raman scattering is a component of Rayleigh scattering, it 
also has the -4 wavelength dependence. 
 
The occurrence of Raman scattering in atmospheric spectra is called the Ring Effect (after 
Grainger and Ring, 1962), who noticed Fraunhofer lines shapes changing with air mass 
(becoming broader and less deep with increasing air mass) during zenith sky 
measurements at various solar zenith angles. 
 

Relative Rayleigh and Raman Scattering Intensities† 
V Polarization in H Polarization in Sum (Natural Light in) 

   
Rayleigh-Brillouin   
VCV = 180 + 4ε HCV = 3ε 0CV = 180 + 7ε 
VCH = 3ε HCH = 3ε + (180 + ε) cos2θ 0CH = 6ε + (180 + ε) cos2θ 
VC0 = 180 + 7ε HC0 = 6ε + (180 + ε) cos2θ 0C0 = (180 + 13ε) + (180 + ε) cos2θ 
  ρ0

C = 6ε / (180 + 7ε) 
Raman   
VWV = 12ε HWV = 9ε 0WV = 21ε 
VWH = 9ε HWH = 9ε + 3ε cos2θ 0WH = 18ε + 3ε cos2θ 
VW0 = 21ε HW0 = 18ε + 3ε cos2θ 0W0 = 39ε + 3ε cos2θ 
  ρ0

W = 6 / 7 
Sum   
VTV = 180 + 16ε HTV = 12ε 0TV = 180 + 28ε 
VTH = 12ε HTH = 12ε + (180 + 4ε) cos2θ 0TH = 24ε + (180 + 4ε) cos2θ 
VT0 = 180 + 28ε HT0 = 24ε + (180 + 4ε) cos2θ 0T0 = (180 + 52ε) + (180 + 4ε) cos2θ 
  ρ0

T = 6ε / (45 + 7ε) 



†Mostly from Kattawar et al., Astrophys. J. 243, 1049-1057, 1981. 
 
The complications to UV (especially) and visible atmospheric measurements are several: 
 
1. I  I0 only to 96% (for 
the single-scattering 
Rayleigh part of the 
source), while we are 
generally trying to fit 
absorptions to much 
better than 1%. Accurate 
Ring effect corrections 
must be made. Here is an 
example of fitting for 
BrO in a GOME 
spectrum showing that 
we can fit very precisely 
for BrO (to better than 
310-4 RMS in this case) 
even in the presence of 
Ring effect structure that is about 10 times as large as the BrO absorption. 
 
2. The amount of Ring effect is proportional to the number of air molecules encountered: 
It can be used to help determine cloud amount (cf. J. Joiner and P. K. Bhartia, The 
determination of cloud pressures from rotational Raman scattering in satellite backscatter 
ultraviolet measurements, J. Geophys. Res. 100, 23,019– 23,026, 1995). 
 
The effect on Fraunhofer shapes is often referred to as filling-in since it makes the 
Fraunhofer lines broader and less deep. There are filling-in factors and filling-in spectra, 
as examples (often with varying definitions). Filling-in is an instrument-dependent 
quantity and a departure from the basic physics. I prefer not to use it unless more basic 
descriptions fail – which I have never seen happen. 
 
The simplest way to take the Ring effect into account when fitting an atmospheric 
spectrum is to calculate a Ring single-scattering corrections as 0 ,RRI Q  where 0I  is the 

Fraunhofer spectrum and the RRQ  are the rotational Raman cross sections. 

 
Higher-order corrections may be obtained to account for interference from strong 
atmospheric absorption (e.g., by O3 in the UV Huggins bands) as 
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and forming an orthogonal set of correction spectra using a Gram-Schmidt 
orthogonalization process. 
 



For GOME, this technique has been tested against Ring corrections using radiative 
transfer modeling calculations; it consistently gives the best results. It is used 
operationally in GOME, SCIAMACHY, and for some gases in OMI. 
 
For ground-based measurements, an experimental Ring correction spectrum may be 
derived by making measurements at two polarizations, measuring at two significantly 
different angles with respect to the Sun (usually, but not necessarily, perpendicular and 
parallel to the direction to the Sun [Solomon et al., 1987]) and using an algebra derived 
from Table 1 of Chance and Spurr, 1997 or Table I of Kattawar et al., 1981 (which 
supplied most of the Chance and Spurr table) to derive the Raman scattered component. 
 


