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History of Lensing



Newtonian and GR predictions
Gravitational lensing first proposed by Soldner (1801) in context of Newtonian theory. 
He found a deflection angle

Einstein derived same result in 1911 using Equivalence principle & Euclidean metric 

In 1915 with general relativity, Einstein derived the new result
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For sun gives 0.85”

For sun gives 1.7”

Freundlich’s efforts to measure this during an Eclipse in the Crimea were foiled by the 
outbreak of WWI and his arrest by the Russians...



Eddington and the Eclipse

DETERMiINATION OF DEFLECTION OF LIGHT BY THE SUN'S GRAVITATIONAL FIELD. 331 

The result from declinations is about twice the weight of that from right ascensions, 
so that the mean result is 

1"-98 

with a probable error of about +0" 12. 

The Principe observations were generally interfered with by cloud. The unfavourable 

circumstances were perhaps partly compensated by the advantage of the extremely 
uniform temperature of the island. The deflection obtained was 

1"-61. 

The probable error is about +0"'30, so that the result has much less weight than 

the preceding. 
Both of these point to the full deflection 1" 75 of EINSTEIN'S generalised relativity 

theory, the Sobral results definitely, and the Principe results perhaps with some un- 

certainty. There remain the Sobral astrographic plates which gave the deflection 

0".93 

discordant by an amount much beyond the limits of its accidental error. For the 

reasons already described at length not much weight is attached to this determination. 

It has been assumed that the displacement is inversely proportional to the distance 

from the sun's centre, since all theories agree on this, and indeed it seems clear from 

considerations of dimensions that a displacement, if due to gravitation, must follow this 

law. From the results with the 4-inch lens, some kind of test of the law is possible 

though it is necessarily only rough. The evidence is summarised in the following table 

and diagram, which show the radial displacement of the individual stars (mean from all 

the plates) plotted against the reciprocal of the distance from the centre. The displace- 
ment according to EINSTEIN'S theory is indicated by the heavy line, according to the 

Newtonian law by the dotted lire, and fron these observations by the thin line. 

RADIAL Displacement of Individual Stars. 

Star. Calculation. Observation. 

11 0 32 0-20 
10 0-33 0-32 
6 0-.40 0 56 
5 [ 0-53 0-54 
4 0-75 084 
2 0-85 0-97 
3 1 088 1 02 
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Using data taken during a solar eclipse in 1919, Eddington 
measured a value close to that of the GR prediction

332 SIR F. W. DYSON, PROF. A. S. EDDINGTON AND MR. C. DAVIDSON ON A 

Thus the results of the expeditions to Sobral and Principe can leave little doubt that 

a deflection of light takes place in the neighbourhood of the sun and that it is of the 

amount demanded by EINSTEIN'S generalised theory of relativity, as attributable to 

the sun's gravitational field. But the observation is of such interest that it will 

probably be considered desirable to repeat it at future eclipses. The unusually 
favourable conditions of the 1919 eclipse will not recur, and it will be necessary to 

photograph fainter stars, and these will probably be at a greater distance from the sun. 
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This can be done with such telescopes as the astrographic with the object-glass stopped 
down to 8 inches, if photographs of the same high quality are obtained as in regular 
stellar work. It will probably be best to discard the use of coelostat mirrors. These 

are of great convenience for photographs of the corona and spectroscopic observations, 
but for work of precision of the high order required, it is undesirable to introduce 

complications, which can be avoided, into the optical train. It would seem that some 

form of equatorial mounting (such as that employed in the Eclipse Expeditions of the 
Lick Observatory) is desirable. 

In conclusion, it is a pleasure to record the great assistance given to the Expeditions 
from many quarters. Reference has been made in the course of the paper to some 
of these. Especial thanks are due to the Brazilian Government for- the hospitality 
and facilities accorded to the observers in Sobral. They were made guests of the 

Dyson, Eddington, 
& Davidson 1920

(bizzarely if not
for this then

Eddington might 
well have been 
imprisoned for 
being a pacifist)



Zwicky’s leap

• Although calculations of lensing by other stars 
were carried out the small angular separations 
of the images led to pessimism that they could 
be seen

• In 1937, Zwicky made the jump of suggesting 
that extragalactic nebulae (galaxies) would 
produce well separated images that could be 
observed
- by applying the virial theorem to the Coma 
and Virgo clusters he was 
(correctly) using masses ~400 times larger 
than was then believed

• He pointed out that gravitational lensing would 
allow the study of objects at greater distances 
(via magnification), that many arcs should be 
visible, and the importance of magnification 
bias in magnitude limited samples.

Zwicky 1937



Discovery of 0957+561
• The first concrete example of a gravitational lens was reported in 1979 in 

the form of the quasar QSO 957+561 A,B found at z~1.4
(Walsh, Carswell & Weymann 1979).  Two seen images separated by 6”.

• Evidence that this is a lens comes from

1. Lensing galaxy detected at z~0.36
2. Similarity of the spectra of the two images
3. Ratio of optical and radio fluxes are consistent between two images
4. VLBI imaging showed detailed correspondence between small scale features
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Images of QSO 0957+561
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Lya ABSORPTION-LINE SYSTEMS 599

exhibits both damped and undamped Lya absorption
systems, which are at distinct redshifts of zdamped \ 1.3911
and respectively Carswell, &zLya \ 1.1249, (Walsh,
Weymann et al. et al.1979 ; Weymann 1979 ; Young 1981a).
In this paper we present HST FOS spectra obtained of the
individual lensed components, 0957]561A and B, and an
analysis of metal and hydrogen-line absorption in each
lensed component. The quality of the data allows detailed
analysis that was not possible in previous studies of this
system.

2. OBSERVATIONS

FOS spectra were obtained with the G270H grating (blue
detector) which covers the wavelength interval jj2152È3350
in the local rest frame (LRF). The wavelength uncertainty is
*j B 2 (R \ j/*j \ 1300), but the wavelength accuracyÓ
was improved with the use of galactic interstellar lines as
Ðducials (see below). These spectra were acquired at roughly
2 week intervals as part of a monitoring campaign(Table 1)
to study small-timescale QSO emission variability to deter-
mine if emission lines arising from ions with di†erent ioniza-
tion potentials vary independently from each other (Dolan
et al. Here, we report only results relevant to several1995).
absorption-line systems which are present in the spectrum
of the lensed components.

Target acquisition was performed on the brightest lensed
component 0957]561A, which was centered in the 0A.86
diameter circular aperture. Accurate small o†set maneuvers
of were used to subsequently center the same apertureD6A.2
on 0957]561B. Five spectra were obtained of each com-
ponent. Exposure times of 420 s (0957]561A) and 500 s
(0957]561B) were sufficient to obtain high signal-to-noise
ratio (S/N) for QSO emission lines. In the ÐveFigure 1,
spectra of each component were co-added in order to
increase the S/N in the continuum and in absorption
features.

The spectra were reduced with the standard FOS pro-
cessing system using calibration constants from FOSCAL
Version 1.3.2.3 (e†ective dates 1995 August 31 through 1996
March 18), and were analyzed with astronomical spectros-
copy application programs available in the International
Ultraviolet Explorer (IUE) Interactive Data Language
(IDL) system. The same exposure time was used at each
observation for each component which resulted in(Table 1),
a S/N D 3 at the bottom of the Lya absorption trough for
component A and B at every epoch. The Ðve spectra for
each lensed component were co-added by weighting equally
the Ñux from each observation ; the co-added spectra have a
S/N which is greater by a factor º2 compared each individ-

TABLE 1

OBSERVATION PROGRAM

Julian Date Lens Exposure
Epoch Date (2,450,000]) Component Time (s)

1 . . . . . . 1995 Nov 4 011.27 A 420
B 500

2 . . . . . . 1995 Nov 18 025.77 A 420
B 500

3 . . . . . . 1995 Dec 2 039.35 A 420
B 500

4 . . . . . . 1995 Dec 16 053.22 A 420
B 500

5 . . . . . . 1995 Dec 30 066.42 A 420
B 500

FIG. 1.ÈCo-added spectra of lens components Q0957]561A (top) and
B (bottom). Lya, O VI, and N V quasar emission lines are present. The
wavelength scale corresponds to the quasar redshift Absorp-zQSO \ 1.41.
tion lines associated with the damped Lya system at andzdamped \ 1.3911,
Lya and O I absorption at are shown as open and ÐlledzLya \ 1.1249,
triangles, respectively. Interstellar absorption (ISM) from Mg and Fe II

absorption is also indicated. Note the strong absorption associated with
features formed in the damped Lya system. QSO Lyb emission is a†ected
by the strong wings of O VI which degrades its Ñux. The absolute Ñux scale
should be multiplied by a factor to properly correct for the(1 ] zQSO)
transformation into the quasar rest frame.

ual spectrum. Co-addition was made after cross-correlating
the Lya emission centroids to remove any systematic error
in wavelength registration ; the residuals were D0.05 Ó.

Strong absorption corresponding to the damped Lya
and the Lyman limit system(zdamped \ 1.3911) (zLya \

1.1249) were detected in both lens components (Fig. 1).
Interstellar absorption lines of Mg II jj2795, 2802 and
Fe II(1) jj2260, 2383, 2600 were also found and(Table 2),
used to recalibrate the wavelength scale that decreased the
wavelength uncertainty to *j D 0.5 The equivalentÓ.
widths were obtained after deredshifting to the(W j) and rest frames and mea-zdamped \ 1.3911 zLya \ 1.1249
sured relative to the local continuum after co-addition of
spectra. If we assume the spectrum is represented by a

TABLE 2

INTERSTELLAR ABSORPTION LINES IDENTIFIED IN 0957]561A AND B

j j Wj Log Cosmic
Ion (vac)a (FOS)b (mÓ)c f a Abundance

Mg II . . . . . . 2803.53 2804.16 1421 0.3054 7.59
Mg II . . . . . . 2797.92 2796.98 1346 0.9177 7.59
Fe II . . . . . . . 2600.17 2600.33 722 0.2239 7.51
Fe II . . . . . . . 2382.04 2383.53 890 0.3000 7.51
Fe II . . . . . . . 2260.08 2260.05 284 0.0037 7.51

a Morton 1991.
b Wavelength uncertainty ^2 Ó.
c Equivalent width uncertainty ^200 mÓ.
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“Huchra’s Lens”
• Quadruply-imaged quasar Q2237+0305 “Einstein Cross” z=1.7

with image separation ~1.8” -> elliptical lens

• Lensing galaxy is ZW2237+030 “Huchra’s Lens” at z=0.04 Huchra+(1985)

Nearby and isolated
-> key system for testing GR



Cluster Arcs
• In 1986, two groups discovered stretched arcs in clusters of galaxies at high 

redshift.  “giant luminous arcs” - very thin in radial direction (unresolved)

• Light from arc confirmed to be from a much higher redshift source

• Confounded expectations based on pre-ROSAT X-ray observations that the 
surface mass density of clusters was too low to cause strong lensing

• Suddenly everyone found arcs in their old data... 

Abel 370 - HST 



Basic Theory



Gravitational Deflection

• Derive gravitational deflection angle α from GR - just sketch elements here
see e.g. Carroll for a complete treatment

• Metric:

• Poisson Equation:

• Geodesic equation:

• Null path condition:

• Solve for photon path assuming that deflection is small so can treat as a 
small perturbation and integrate along the undeflected path to obtain

• Deflection angle: 
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Example: Point mass
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(6)
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Thin screen approximation
2.1.2 Thin Screen Approximation

Figure 3 illustrates that most of the light deflection occurs within ∆z ∼ ±b of the point of closest
encounter between the light ray and the point mass. This ∆z is typically much smaller than
the distances between observer and lens and between lens and source. The lens can therefore be
considered thin compared to the total extent of the light path. The mass distribution of the lens
can then be projected along the line-of-sight and be replaced by a mass sheet orthogonal to the
line-of-sight. The plane of the mass sheet is commonly called the lens plane. The mass sheet is
characterized by its surface mass density

Σ(!ξ) =

∫

ρ(!ξ, z) dz , (9)

where !ξ is a two-dimensional vector in the lens plane. The deflection angle at position !ξ is the
sum of the deflections due to all the mass elements in the plane:

!̂α(!ξ) =
4G

c2

∫

(!ξ − !ξ′)Σ(!ξ′)

|!ξ − !ξ′|2
d2ξ′ . (10)

Figure 4 illustrates the situation.

Figure 4: A light ray which intersects the lens plane at !ξ is deflected by an angle !̂α(!ξ).

In general, the deflection angle is a two-component vector. In the special case of a circularly
symmetric lens, we can shift the coordinate origin to the center of symmetry and reduce light
deflection to a one-dimensional problem. The deflection angle then points toward the center of
symmetry, and its modulus is

α̂(ξ) =
4GM(ξ)

c2ξ
, (11)

where ξ is the distance from the lens center and M(ξ) is the mass enclosed within radius ξ,

M(ξ) = 2π

∫ ξ

0

Σ(ξ′)ξ′ dξ′ . (12)

2.1.3 Lensing Geometry and Lens Equation

The geometry of a typical gravitational lens system is shown in Fig. 5. A light ray from a source S
is deflected by the angle !̂α at the lens and reaches an observer O. The angle between the (arbitrarily

chosen) optic axis and the true source position is !β, and the angle between the optic axis and the
image I is !θ. The (angular diameter) distances between observer and lens, lens and source, and
observer and source are Dd, Dds, and Ds, respectively.

Figure 5: Illustration of a gravitational lens system. The light ray propagates from the source S at
transverse distance η from the optic axis to the observer O, passing the lens at transverse distance
ξ. It is deflected by an angle α̂. The angular separations of the source and the image from the
optic axis as seen by the observer are β and θ, respectively. The reduced deflection angle α and
the actual deflection angle α̂ are related by eq. (13). The distances between the observer and the
source, the observer and the lens, and the lens and the source are Ds, Dd, and Dds, respectively.

It is now convenient to introduce the reduced deflection angle

!α =
Dds

Ds

!̂α . (13)
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In the case of circular symmetry these look more familiar

Most of the deflection occurs near to the lens (within z~b).  Since the distances
to the source and the observed are much greater than this we’re motivated to make
the thin screen approximation and treat all deflection as occurring in the lens plane

Projected surface density:

Deflection angle:

For a general mass distribution we get:

Now consider what this looks like to an observer...

Then since weak deflections add linearly



The Lens Equation
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∇⊥Φ(r) =
∂Φ
∂b

=
GMb

(b2 + z2)3/2
(7)

α̂ = 2
∫
∇⊥Φ(r) (8)

= 2
∫ ∞

−∞
dz

GMb

(b2 + z2)3/2
(9)

=
2GM

b
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−∞

dx

(1 + x2)3/2
(10)

=
4GM

b
(11)

α̂ =
4GM

b
(12)

∆t = −
∫

Φ ds (13)

Lens equation:

β = θ −α(θ) (14)

True in flat space, but is also how we define angular diameter distance in cosmology so 
holds more generally

From Fig. 5 we see that θDs = βDs − α̂Dds. Therefore, the positions of the source and the image
are related through the simple equation

$β = $θ − $α($θ) . (14)

Equation (14) is called the lens equation, or ray-tracing equation. It is nonlinear in the general
case, and so it is possible to have multiple images $θ corresponding to a single source position $β. As
Fig. 5 shows, the lens equation is trivial to derive and requires merely that the following Euclidean
relation should exist between the angle enclosed by two lines and their separation,

separation = angle× distance . (15)

It is not obvious that the same relation should also hold in curved spacetimes. However, if the
distances Dd,s,ds are defined such that eq. (15) holds, then the lens equation must obviously be
true. Distances so defined are called angular-diameter distances, and eqs. (13), (14) are valid only
when these distances are used. Note that in general Dds #= Ds − Dd.

As an instructive special case consider a lens with a constant surface-mass density. From eq.
(11), the (reduced) deflection angle is

α(θ) =
Dds

Ds

4G

c2ξ
(Σπξ2) =

4πGΣ

c2

DdDds

Ds
θ , (16)

where we have set ξ = Ddθ. In this case, the lens equation is linear; that is, β ∝ θ. Let us define
a critical surface-mass density

Σcr =
c2

4πG

Ds

DdDds
= 0.35 g cm−2

(

D

1 Gpc

)−1

, (17)

where the effective distance D is defined as the combination of distances

D =
DdDds

Ds
. (18)

For a lens with a constant surface mass density Σcr, the deflection angle is α(θ) = θ, and so β = 0
for all θ. Such a lens focuses perfectly, with a well-defined focal length. A typical gravitational lens,
however, behaves quite differently. Light rays which pass the lens at different impact parameters
cross the optic axis at different distances behind the lens. Considered as an optical device, a
gravitational lens therefore has almost all aberrations one can think of. However, it does not have
any chromatic aberration because the geometry of light paths is independent of wavelength.

A lens which has Σ > Σcr somewhere within it is referred to as being supercritical . Usually,
multiple imaging occurs only if the lens is supercritical, but there are exceptions to this rule (e.g.,
Subramanian & Cowling 1986).

2.1.4 Einstein Radius

Consider now a circularly symmetric lens with an arbitrary mass profile. According to eqs. (11)
and (13), the lens equation reads

β(θ) = θ −
Dds

DdDs

4GM(θ)

c2 θ
. (19)

Due to the rotational symmetry of the lens system, a source which lies exactly on the optic axis
(β = 0) is imaged as a ring if the lens is supercritical. Setting β = 0 in eq. (19) we obtain the
radius of the ring to be

θE =

[

4GM(θE)

c2

Dds

DdDs

]1/2

. (20)
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Point mass lens equation:
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DLS
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β = θ − θ2
E

θ

|θ|2
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Microlensing

µ ≥ 1.34 (22)

mag ≥ 0.32 (23)

τ(LMC) ∼ 10−7 (24)

τ(Gal.Bulge.) ∼ 10−6 (25)

}

Galaxy lensing

M(θE) = π(DLθE)2Σcr (26)

H0∆τ = const (27)
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If space is not flat then                          and in principle lensing allows one of the few model 
independent tests of curvature in cosmology 
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Two solutions 

Figure 6: A source S on the optic axis of a circularly symmetric lens is imaged as a ring with an
angular radius given by the Einstein radius θE.

This is referred to as the Einstein radius . Figure 6 illustrates the situation. Note that the Einstein
radius is not just a property of the lens, but depends also on the various distances in the problem.

The Einstein radius provides a natural angular scale to describe the lensing geometry for several
reasons. In the case of multiple imaging, the typical angular separation of images is of order 2θE.
Further, sources which are closer than about θE to the optic axis experience strong lensing in the
sense that they are significantly magnified, whereas sources which are located well outside the
Einstein ring are magnified very little. In many lens models, the Einstein ring also represents
roughly the boundary between source positions that are multiply-imaged and those that are only
singly-imaged. Finally, by comparing eqs. (17) and (20) we see that the mean surface mass density
inside the Einstein radius is just the critical density Σcr.

For a point mass M , the Einstein radius is given by

θE =

(

4GM

c2

Dds

DdDs

)1/2

. (21)

To give two illustrative examples, we consider lensing by a star in the Galaxy, for which M ∼ M!

and D ∼ 10 kpc, and lensing by a galaxy at a cosmological distance with M ∼ 1011 M! and
D ∼ 1 Gpc. The corresponding Einstein radii are

θE = (0.9 mas)

(

M

M!

)1/2 (

D

10 kpc

)−1/2

,

θE = (0.′′9)

(

M

1011 M!

)1/2 (

D

Gpc

)−1/2

.

(22)

2.1.5 Imaging by a Point Mass Lens

For a point mass lens, we can use the Einstein radius (20) to rewrite the lens equation in the form

β = θ −
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θ
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This equation has two solutions,
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Any source is imaged twice by a point mass lens. The two images are on either side of the source,
with one image inside the Einstein ring and the other outside. As the source moves away from
the lens (i.e. as β increases), one of the images approaches the lens and becomes very faint, while
the other image approaches closer and closer to the true position of the source and tends toward
a magnification of unity.

Figure 7: Relative locations of the source S and images I+, I− lensed by a point mass M. The
dashed circle is the Einstein ring with radius θE. One image is inside the Einstein ring and the
other outside.

Gravitational light deflection preserves surface brightness (because of Liouville’s theorem), but
gravitational lensing changes the apparent solid angle of a source. The total flux received from a
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Characteristic scales

Figure 6: A source S on the optic axis of a circularly symmetric lens is imaged as a ring with an
angular radius given by the Einstein radius θE.

This is referred to as the Einstein radius . Figure 6 illustrates the situation. Note that the Einstein
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From Fig. 5 we see that θDs = βDs − α̂Dds. Therefore, the positions of the source and the image
are related through the simple equation

$β = $θ − $α($θ) . (14)

Equation (14) is called the lens equation, or ray-tracing equation. It is nonlinear in the general
case, and so it is possible to have multiple images $θ corresponding to a single source position $β. As
Fig. 5 shows, the lens equation is trivial to derive and requires merely that the following Euclidean
relation should exist between the angle enclosed by two lines and their separation,

separation = angle× distance . (15)

It is not obvious that the same relation should also hold in curved spacetimes. However, if the
distances Dd,s,ds are defined such that eq. (15) holds, then the lens equation must obviously be
true. Distances so defined are called angular-diameter distances, and eqs. (13), (14) are valid only
when these distances are used. Note that in general Dds #= Ds − Dd.

As an instructive special case consider a lens with a constant surface-mass density. From eq.
(11), the (reduced) deflection angle is

α(θ) =
Dds

Ds

4G

c2ξ
(Σπξ2) =

4πGΣ

c2

DdDds

Ds
θ , (16)

where we have set ξ = Ddθ. In this case, the lens equation is linear; that is, β ∝ θ. Let us define
a critical surface-mass density

Σcr =
c2

4πG

Ds

DdDds
= 0.35 g cm−2

(

D

1 Gpc

)−1

, (17)

where the effective distance D is defined as the combination of distances

D =
DdDds

Ds
. (18)

For a lens with a constant surface mass density Σcr, the deflection angle is α(θ) = θ, and so β = 0
for all θ. Such a lens focuses perfectly, with a well-defined focal length. A typical gravitational lens,
however, behaves quite differently. Light rays which pass the lens at different impact parameters
cross the optic axis at different distances behind the lens. Considered as an optical device, a
gravitational lens therefore has almost all aberrations one can think of. However, it does not have
any chromatic aberration because the geometry of light paths is independent of wavelength.

A lens which has Σ > Σcr somewhere within it is referred to as being supercritical . Usually,
multiple imaging occurs only if the lens is supercritical, but there are exceptions to this rule (e.g.,
Subramanian & Cowling 1986).

2.1.4 Einstein Radius

Consider now a circularly symmetric lens with an arbitrary mass profile. According to eqs. (11)
and (13), the lens equation reads

β(θ) = θ −
Dds

DdDs

4GM(θ)

c2 θ
. (19)

Due to the rotational symmetry of the lens system, a source which lies exactly on the optic axis
(β = 0) is imaged as a ring if the lens is supercritical. Setting β = 0 in eq. (19) we obtain the
radius of the ring to be

θE =

[

4GM(θE)

c2

Dds

DdDs

]1/2

. (20)
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Lens: galactic star; source: LMC star
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Critical density

Extended object needs Σ>Σcr somewhere for strong lensing to occur
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Magnification
gravitationally lensed image of a source is therefore changed in proportion to the ratio between
the solid angles of the image and the source,

magnification =
image area

source area
. (25)

Figure 8 shows the magnified images of a source lensed by a point mass.

Figure 8: Magnified images of a source lensed by a point mass.

For a circularly symmetric lens, the magnification factor µ is given by

µ =
θ

β

dθ

dβ
. (26)

For a point mass lens, which is a special case of a circularly symmetric lens, we can substitute for
β using the lens equation (23) to obtain the magnifications of the two images,

µ± =

[

1 −
(

θE

θ±

)4
]−1

=
u2 + 2

2u
√

u2 + 4
±

1

2
, (27)

where u is the angular separation of the source from the point mass in units of the Einstein angle,
u = βθ−1

E . Since θ− < θE, µ− < 0, and hence the magnification of the image which is inside
the Einstein ring is negative. This means that this image has its parity flipped with respect to
the source. The net magnification of flux in the two images is obtained by adding the absolute
magnifications,

µ = |µ+| + |µ−| =
u2 + 2

u
√

u2 + 4
. (28)

When the source lies on the Einstein radius, we have β = θE, u = 1, and the total magnification
becomes

µ = 1.17 + 0.17 = 1.34 . (29)

How can lensing by a point mass be detected? Unless the lens is massive (M > 106 M" for a
cosmologically distant source), the angular separation of the two images is too small to be resolved.
However, even when it is not possible to see the multiple images, the magnification can still be
detected if the lens and source move relative to each other, giving rise to lensing-induced time
variability of the source (Chang & Refsdal 1979; Gott 1981). When this kind of variability is
induced by stellar mass lenses it is referred to as microlensing. Microlensing was first observed
in the multiply-imaged QSO 2237+0305 (Irwin et al. 1989), and may also have been seen in QSO
0957+561 (Schild & Smith 1991; see also Sect. 3.7.4). Paczyński (1986b) had the brilliant idea of
using microlensing to search for so-called Massive Astrophysical Compact Halo Objects (MACHOs,
Griest 1991) in the Galaxy. We discuss this topic in some depth in Sect. 2.2.

2.2 Microlensing in the Galaxy

2.2.1 Basic Relations

If the closest approach between a point mass lens and a source is ≤ θE, the peak magnification in
the lensing-induced light curve is µmax ≥ 1.34. A magnification of 1.34 corresponds to a brightening
by 0.32 magnitudes, which is easily detectable. Paczyński (1986b) proposed monitoring millions
of stars in the LMC to look for such magnifications in a small fraction of the sources. If enough
events are detected, it should be possible to map the distribution of stellar-mass objects in our
Galaxy.
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Griest 1991) in the Galaxy. We discuss this topic in some depth in Sect. 2.2.

2.2 Microlensing in the Galaxy

2.2.1 Basic Relations

If the closest approach between a point mass lens and a source is ≤ θE, the peak magnification in
the lensing-induced light curve is µmax ≥ 1.34. A magnification of 1.34 corresponds to a brightening
by 0.32 magnitudes, which is easily detectable. Paczyński (1986b) proposed monitoring millions
of stars in the LMC to look for such magnifications in a small fraction of the sources. If enough
events are detected, it should be possible to map the distribution of stellar-mass objects in our
Galaxy.
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where u is the angular separation of the source from the point mass in units of the Einstein angle,
u = βθ−1
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When the source lies on the Einstein radius, we have β = θE, u = 1, and the total magnification
becomes

µ = 1.17 + 0.17 = 1.34 . (29)

How can lensing by a point mass be detected? Unless the lens is massive (M > 106 M" for a
cosmologically distant source), the angular separation of the two images is too small to be resolved.
However, even when it is not possible to see the multiple images, the magnification can still be
detected if the lens and source move relative to each other, giving rise to lensing-induced time
variability of the source (Chang & Refsdal 1979; Gott 1981). When this kind of variability is
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If circularly symmetric

Figure 6: A source S on the optic axis of a circularly symmetric lens is imaged as a ring with an
angular radius given by the Einstein radius θE.

This is referred to as the Einstein radius . Figure 6 illustrates the situation. Note that the Einstein
radius is not just a property of the lens, but depends also on the various distances in the problem.

The Einstein radius provides a natural angular scale to describe the lensing geometry for several
reasons. In the case of multiple imaging, the typical angular separation of images is of order 2θE.
Further, sources which are closer than about θE to the optic axis experience strong lensing in the
sense that they are significantly magnified, whereas sources which are located well outside the
Einstein ring are magnified very little. In many lens models, the Einstein ring also represents
roughly the boundary between source positions that are multiply-imaged and those that are only
singly-imaged. Finally, by comparing eqs. (17) and (20) we see that the mean surface mass density
inside the Einstein radius is just the critical density Σcr.

For a point mass M , the Einstein radius is given by

θE =

(

4GM

c2

Dds

DdDs

)1/2

. (21)

To give two illustrative examples, we consider lensing by a star in the Galaxy, for which M ∼ M!

and D ∼ 10 kpc, and lensing by a galaxy at a cosmological distance with M ∼ 1011 M! and
D ∼ 1 Gpc. The corresponding Einstein radii are

θE = (0.9 mas)

(

M

M!

)1/2 (

D

10 kpc

)−1/2

,

θE = (0.′′9)

(

M

1011 M!

)1/2 (

D

Gpc

)−1/2

.

(22)

2.1.5 Imaging by a Point Mass Lens

For a point mass lens, we can use the Einstein radius (20) to rewrite the lens equation in the form

β = θ −
θ2
E

θ
. (23)

This equation has two solutions,

θ± =
1

2

(

β ±
√

β2 + 4θ2
E

)

. (24)

Any source is imaged twice by a point mass lens. The two images are on either side of the source,
with one image inside the Einstein ring and the other outside. As the source moves away from
the lens (i.e. as β increases), one of the images approaches the lens and becomes very faint, while
the other image approaches closer and closer to the true position of the source and tends toward
a magnification of unity.

Figure 7: Relative locations of the source S and images I+, I− lensed by a point mass M. The
dashed circle is the Einstein ring with radius θE. One image is inside the Einstein ring and the
other outside.

Gravitational light deflection preserves surface brightness (because of Liouville’s theorem), but
gravitational lensing changes the apparent solid angle of a source. The total flux received from a
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I. INTRODUCTION

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)(dx2 + dy2 + dz2) (1)
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dxν
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Complementary information to image locations 
c.f. deflection angle only probes gradient of potential

Two additional linear combinations of ψij are important, and these are the components of the
shear tensor,

γ1(#θ) =
1

2
(ψ11 − ψ22) ≡ γ(#θ) cos

[

2φ(#θ)
]

,

γ2(#θ) = ψ12 = ψ21 ≡ γ(#θ) sin
[

2φ(#θ)
]

.

(57)

With these definitions, the Jacobian matrix can be written

A =

(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)

= (1 − κ)

(

1 0
0 1

)

− γ

(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)

.

(58)

The meaning of the terms convergence and shear now becomes intuitively clear. Convergence
acting alone causes an isotropic focusing of light rays, leading to an isotropic magnification of a
source. The source is mapped onto an image with the same shape but larger size. Shear introduces
anisotropy (or astigmatism) into the lens mapping; the quantity γ = (γ2

1 + γ2
2)1/2 describes the

magnitude of the shear and φ describes its orientation. As shown in Fig. 13, a circular source of
unit radius becomes, in the presence of both κ and γ, an elliptical image with major and minor
axes

(1 − κ − γ)−1 , (1 − κ + γ)−1 . (59)

The magnification is

µ = detM =
1

detA
=

1

[(1 − κ)2 − γ2]
. (60)

Note that the Jacobian A is in general a function of position #θ.

Figure 13: Illustration of the effects of convergence and shear on a circular source. Convergence
magnifies the image isotropically, and shear deforms it to an ellipse.

3.3 Gravitational Lensing via Fermat’s Principle

3.3.1 The Time-Delay Function

The lensing properties of model gravitational lenses are especially easy to visualize by application of
Fermat’s principle of geometrical optics (Nityananda 1984, unpublished; Schneider 1985; Blandford
& Narayan 1986; Nityananda & Samuel 1992). From the lens equation (14) and the fact that the
deflection angle is the gradient of the effective lensing potential ψ, we obtain

(#θ − #β) − #∇θψ = 0 . (61)

This equation can be written as a gradient,

#∇θ

[

1

2
(#θ − #β)2 − ψ

]

= 0 . (62)

The physical meaning of the term in square brackets becomes more obvious by considering the
time-delay function,

t(#θ) =
(1 + zd)

c

DdDs

Dds

[

1

2
(#θ − #β)2 − ψ(#θ)

]

= tgeom + tgrav .

(63)
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Passage through potential also leads to time delay 

Total time delay is the sum of the extra path length from the deflection
and the gravitational time delay

Shapiro 1964
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Figure 3 In this drawing of gravitational lensing, the lensing mass is indicated with a dot at the

center of the Einstein ring, which is marked with a dashed line; the source positions are shown with

a series of small open circles; and the locations and the shapes of the two images are shown with

a series of dark ellipses. At any instant the two images, the source, and the lens are all on a single

line, as shown in the figure for one particular instant.

because of the finite resolution of the optical telescopes. Fortunately, all objects

in the Galaxy move, and we may expect a relative proper motion to be

ṙ = V

Dd
= 4.22 mas yr−1

(
V

200 km s−1

) (
10 kpc

Dd

)
, (14)

where V is the relative transverse velocity of the lens with respect to the source.

Combining the last two equations we can calculate the characteristic time scale

for a microlensing phenomenon as the time it takes the source to move with

respect to the lens by one Einstein ring radius:

t0 ≡ rE

ṙ

= 0.214 yr

(
M

M#

)1/2 (
Dd

10 kpc

)1/2 (
1− Dd

Ds

)1/2 (
200 km s−1

V

)
. (15)

This definition is almost universally accepted, with one major exception: The

MACHO collaborationmultiplies the value of t0 as given by Equation (15) by 2.

While the lens moves with respect to the source, the two images change their

position and brightness, as shown in Figure 3. When the source is close to the
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Figure 6: A source S on the optic axis of a circularly symmetric lens is imaged as a ring with an
angular radius given by the Einstein radius θE.

This is referred to as the Einstein radius . Figure 6 illustrates the situation. Note that the Einstein
radius is not just a property of the lens, but depends also on the various distances in the problem.

The Einstein radius provides a natural angular scale to describe the lensing geometry for several
reasons. In the case of multiple imaging, the typical angular separation of images is of order 2θE.
Further, sources which are closer than about θE to the optic axis experience strong lensing in the
sense that they are significantly magnified, whereas sources which are located well outside the
Einstein ring are magnified very little. In many lens models, the Einstein ring also represents
roughly the boundary between source positions that are multiply-imaged and those that are only
singly-imaged. Finally, by comparing eqs. (17) and (20) we see that the mean surface mass density
inside the Einstein radius is just the critical density Σcr.

For a point mass M , the Einstein radius is given by

θE =

(

4GM

c2

Dds

DdDs

)1/2

. (21)

To give two illustrative examples, we consider lensing by a star in the Galaxy, for which M ∼ M!

and D ∼ 10 kpc, and lensing by a galaxy at a cosmological distance with M ∼ 1011 M! and
D ∼ 1 Gpc. The corresponding Einstein radii are

θE = (0.9 mas)

(

M

M!

)1/2 (

D

10 kpc

)−1/2

,

θE = (0.′′9)

(

M

1011 M!

)1/2 (

D

Gpc

)−1/2

.

(22)

2.1.5 Imaging by a Point Mass Lens

For a point mass lens, we can use the Einstein radius (20) to rewrite the lens equation in the form

β = θ −
θ2
E

θ
. (23)

This equation has two solutions,

θ± =
1

2

(

β ±
√

β2 + 4θ2
E

)

. (24)

Any source is imaged twice by a point mass lens. The two images are on either side of the source,
with one image inside the Einstein ring and the other outside. As the source moves away from
the lens (i.e. as β increases), one of the images approaches the lens and becomes very faint, while
the other image approaches closer and closer to the true position of the source and tends toward
a magnification of unity.

Figure 7: Relative locations of the source S and images I+, I− lensed by a point mass M. The
dashed circle is the Einstein ring with radius θE. One image is inside the Einstein ring and the
other outside.

Gravitational light deflection preserves surface brightness (because of Liouville’s theorem), but
gravitational lensing changes the apparent solid angle of a source. The total flux received from a

10

Einstein radius for a solar mass lens in the galaxy and a source located in the LMC

Too small to resolve individual images with optical telescope, but can see the effect of
magnification

3

β = θ − θ2
E

θ

|θ|2
(18)

Microlensing

µ ≥ 1.34 (19)

τ(LMC) ∼ 10−7 (20)

τ(Gal.Bulge.) ∼ 10−6 (21)

}

For sources that pass inside the lens Einstein radius

3

β = θ − θ2
E

θ

|θ|2
(18)

Microlensing

µ ≥ 1.34 (19)

mag ≥ 0.32 (20)

τ(LMC) ∼ 10−7 (21)

τ(Gal.Bulge.) ∼ 10−6 (22)

}

Readily observable change in source magnitude
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a series of small open circles; and the locations and the shapes of the two images are shown with

a series of dark ellipses. At any instant the two images, the source, and the lens are all on a single

line, as shown in the figure for one particular instant.

because of the finite resolution of the optical telescopes. Fortunately, all objects

in the Galaxy move, and we may expect a relative proper motion to be
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where V is the relative transverse velocity of the lens with respect to the source.

Combining the last two equations we can calculate the characteristic time scale

for a microlensing phenomenon as the time it takes the source to move with

respect to the lens by one Einstein ring radius:
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This definition is almost universally accepted, with one major exception: The

MACHO collaborationmultiplies the value of t0 as given by Equation (15) by 2.

While the lens moves with respect to the source, the two images change their

position and brightness, as shown in Figure 3. When the source is close to the
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Time scales

Perhaps the biggest problem with Paczyński’s proposal is that monitoring a million stars or
more primarily leads to the detection of a huge number of variable stars. The intrinsically variable
sources must somehow be distinguished from stars whose variability is caused by microlensing.
Fortunately, the light curves of lensed stars have certain tell-tale signatures — the light curves
are expected to be symmetric in time and the magnification is expected to be achromatic because
light deflection does not depend on wavelength (but see the more detailed discussion in Sect. 2.2.4
below). In contrast, intrinsically variable stars typically have asymmetric light curves and do
change their colors.

The expected time scale for microlensing-induced variations is given in terms of the typical
angular scale θE, the relative velocity v between source and lens, and the distance to the lens:

t0 =
DdθE

v
= 0.214 yr

(

M

M!

)1/2 (

Dd

10 kpc

)1/2 (

Dds

Ds

)1/2 (

200 kms−1

v

)

. (30)

The ratio DdsD−1
s is close to unity if the lenses are located in the Galactic halo and the sources

are in the LMC. If light curves are sampled with time intervals between about an hour and a
year, MACHOs in the mass range 10−6 M! to 102 M! are potentially detectable. Note that the
measurement of t0 in a given microlensing event does not directly give M , but only a combination
of M , Dd, Ds, and v. Various ideas to break this degeneracy have been discussed. Figure 9 shows
microlensing-induced light curves for six different minimum separations ∆y = umin between the
source and the lens. The widths of the peaks are ∼ t0, and there is a direct one-to-one mapping
between ∆y and the maximum magnification at the peak of the light curve. A microlensing light
curve therefore gives two observables, t0 and ∆y.

Figure 9: Microlensing-induced light curves for six minimum separations between the source and
the lens, ∆y = 0.1, 0.3, . . . , 1.1. The separation is expressed in units of the Einstein radius.

The chance of seeing a microlensing event is usually expressed in terms of the optical depth,
which is the probability that at any instant of time a given star is within an angle θE of a lens.
The optical depth is the integral over the number density n(Dd) of lenses times the area enclosed
by the Einstein ring of each lens, i.e.

τ =
1

δω

∫

dV n(Dd)πθ2
E , (31)

where dV = δω D2
d dDd is the volume of an infinitesimal spherical shell with radius Dd which

covers a solid angle δω. The integral gives the solid angle covered by the Einstein circles of the
lenses, and the probability is obtained upon dividing this quantity by the solid angle δω which is
observed. Inserting equation (21) for the Einstein angle, we obtain

τ =

∫ Ds

0

4πGρ

c2

DdDds

Ds
dDd =

4πG

c2
D2

s

∫ 1

0

ρ(x)x(1 − x) dx , (32)

where x ≡ DdD−1
s and ρ is the mass density of MACHOs. In writing (32), we have made use of the

fact that space is locally Euclidean, hence Dds = Ds −Dd. If ρ is constant along the line-of-sight,
the optical depth simplifies to

τ =
2π

3

Gρ

c2
D2

s . (33)

It is important to note that the optical depth τ depends on the mass density of lenses ρ and not
on their mass M . The timescale of variability induced by microlensing, however, does depend on
the square root of the mass, as shown by eq. (30).
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Typical time scales range from hours to months

Measured time scale therefore constrains mass of object, but is degenerate
with distance to lens/source and velocity of lens

Degeneracy can be broken if velocity is changing - e.g. from parallax due to Earth’s 
acceleration

Can use this to search for dark massive objects in our galaxy
e.g. massive dark matter clumps = MACHOs

  faint stars



Probability of microlensing

Perhaps the biggest problem with Paczyński’s proposal is that monitoring a million stars or
more primarily leads to the detection of a huge number of variable stars. The intrinsically variable
sources must somehow be distinguished from stars whose variability is caused by microlensing.
Fortunately, the light curves of lensed stars have certain tell-tale signatures — the light curves
are expected to be symmetric in time and the magnification is expected to be achromatic because
light deflection does not depend on wavelength (but see the more detailed discussion in Sect. 2.2.4
below). In contrast, intrinsically variable stars typically have asymmetric light curves and do
change their colors.

The expected time scale for microlensing-induced variations is given in terms of the typical
angular scale θE, the relative velocity v between source and lens, and the distance to the lens:
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The ratio DdsD−1
s is close to unity if the lenses are located in the Galactic halo and the sources

are in the LMC. If light curves are sampled with time intervals between about an hour and a
year, MACHOs in the mass range 10−6 M! to 102 M! are potentially detectable. Note that the
measurement of t0 in a given microlensing event does not directly give M , but only a combination
of M , Dd, Ds, and v. Various ideas to break this degeneracy have been discussed. Figure 9 shows
microlensing-induced light curves for six different minimum separations ∆y = umin between the
source and the lens. The widths of the peaks are ∼ t0, and there is a direct one-to-one mapping
between ∆y and the maximum magnification at the peak of the light curve. A microlensing light
curve therefore gives two observables, t0 and ∆y.

Figure 9: Microlensing-induced light curves for six minimum separations between the source and
the lens, ∆y = 0.1, 0.3, . . . , 1.1. The separation is expressed in units of the Einstein radius.

The chance of seeing a microlensing event is usually expressed in terms of the optical depth,
which is the probability that at any instant of time a given star is within an angle θE of a lens.
The optical depth is the integral over the number density n(Dd) of lenses times the area enclosed
by the Einstein ring of each lens, i.e.

τ =
1

δω

∫

dV n(Dd)πθ2
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It is important to note that the optical depth τ depends on the mass density of lenses ρ and not
on their mass M . The timescale of variability induced by microlensing, however, does depend on
the square root of the mass, as shown by eq. (30).
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are in the LMC. If light curves are sampled with time intervals between about an hour and a
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measurement of t0 in a given microlensing event does not directly give M , but only a combination
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microlensing-induced light curves for six different minimum separations ∆y = umin between the
source and the lens. The widths of the peaks are ∼ t0, and there is a direct one-to-one mapping
between ∆y and the maximum magnification at the peak of the light curve. A microlensing light
curve therefore gives two observables, t0 and ∆y.
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It is important to note that the optical depth τ depends on the mass density of lenses ρ and not
on their mass M . The timescale of variability induced by microlensing, however, does depend on
the square root of the mass, as shown by eq. (30).
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It is important to note that the optical depth τ depends on the mass density of lenses ρ and not
on their mass M . The timescale of variability induced by microlensing, however, does depend on
the square root of the mass, as shown by eq. (30).
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The chance of seeing a microlensing event is usually expressed in terms of the optical depth,
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It is important to note that the optical depth τ depends on the mass density of lenses ρ and not
on their mass M . The timescale of variability induced by microlensing, however, does depend on
the square root of the mass, as shown by eq. (30).
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It is important to note that the optical depth τ depends on the mass density of lenses ρ and not
on their mass M . The timescale of variability induced by microlensing, however, does depend on
the square root of the mass, as shown by eq. (30).
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Microlensing requirements

Alcock et al (1993,2000)
MACHO collaboration

Same lightcurve seen in two wavelength 
bands - used to exclude variable stars
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Microlensing towards the bulge
• What is the distribution of stars in the galaxy?

• Looking for microlensing events towards galactic bulge useful calibration 
exercise for surveys since should definitely see something...  
1000s of events now been seen by OGLE, MACHO, MOA, EROS

• Prediction from known disc stars c. 1991 was
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ABSTRACT

We present a measurement of the microlensing optical depth toward the Galactic bulge based on 4 years of the
OGLE-II survey. We consider only bright sources in the extended red clump giant (RCG) region of the color-
magnitude diagram, in 20 bulge fields covering!5 deg2 between 0" < l < 3" and#4" < b < #2". Using a sample
of 32 events we find ! ¼ 2:55þ0:57

#0:46 ; 10
#6 at (l; b) ¼ (1N16; #2N75). Taking into account the measured gradient

along the Galactic latitude b, ! ¼ ½(4:48 ' 2:37)þ (0:78 ' 0:84) ; b( ; 10#6, this value is consistent with previous
measurements using RCG sources and recent theoretical predictions. We determine the microlensing parameters and
select events using a model light curve that allows for flux blending. Photometric quality delivered by difference image
analysis (DIA) combined with the 1B3 median seeing of the OGLE-II images are sufficient to constrain and reject the
majority of strong blends. We find that!38% of the OGLE-II events that appear to have RCG sources are actually due
to much fainter stars blended with a bright companion. We show explicitly that model fits without blending result
in similar ! estimates through partial cancellation of contributions from higher detection efficiency, underestimated
timescales, and a larger number of selected events. The near cancellation of the optical depth bias and the fact that
microlensing event selection based on models without blending discriminates against blends have been utilized by
previous analyses based on RCG sources. The latter approach, however, leads to biased timescale distributions and
event rates. Consequently, microlensing studies should carefully consider source confusion effects even for bright stars.

Subject headinggs: Galaxy: bulge — gravitational lensing — stars: variables: other

Online material: machine-readable tables, tar file

1. INTRODUCTION

Following the suggestion of Paczyński (1991) and Griest et al.
(1991), several teams have carried out microlensing surveys
toward the Galactic bulge (GB). To date, well over 2 ; 103 mi-
crolensing events in the GB have been detected by the OGLE
(Optical Gravitational Lensing Experiment; Udalski et al. 1994,
2000; Woźniak et al. 2001; Udalski 2003), MOA (Microlensing
Observations inAstrophysics; Bond et al. 2001; Sumi et al. 2003b),
MACHO (Alcock et al. 1997, 2000b), and EROS (Expérience
pour la Recherche d’Objets Sombres; Afonso et al. 2003) groups.
Thousands of detections are expected in the upcoming years from
MOA5 and OGLE-III.6 It is now well understood that these obser-
vations are useful for studying the structure, kinematics, and dy-
namics of the Galaxy, and the stellar mass function, as the event
rate and timescale distributions are related to themasses and veloc-
ities of lens objects.

The magnification of a microlensing event is described by
(Paczyński 1986)

A(u) ¼ u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p ; ð1Þ

where u is the projected separation of the source and lens in
units of the Einstein radius RE, which is given by

RE(M ; x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GM

c2
Dsx(1# x)

r
; ð2Þ

where M is the lens mass, x ¼ Dl/Ds is the normalized lens dis-
tance, andDl andDs are the observer-lens and the observer-source
distances. The time variation of u ¼ u(t) is

u(t) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2min þ
t # t0
tE

" #2
s

; ð3Þ

where umin, t0, tE ¼ RE/vt, and vt are, respectively, the minimum
impact parameter in units of RE, the time of maximum magni-
fication, the event timescale, and the transverse velocity of the
lens relative to the line of sight toward the source star. From light
curve alone, one can determine the values of umin, t0, and tE, but
not the values of M, x, or vt.
Microlensing optical depth (the total cross section for micro-

lensing) is directly related to the mass density of compact objects
along the line of sight (Paczyński 1996). However, previous re-
sults have been controversial. Paczyński (1991) and Griest et al.
(1991) first predicted the optical depth of ! ! 5 ; 10#7, assum-
ing that all events were associated with known disk stars. After
the first several bulge events were reported by OGLE (Udalski
et al. 1994), the high event rate prompted Kiraga & Paczyński
(1994) to evaluate the contribution of bulge stars in addition to
the disk stars. They estimated ! ! 8:5 ; 10#7 and concluded that
the value could be about twice as large if the bulge were elon-
gated along the line of sight. Nevertheless, the first measurements
of the optical depth, ! ! 3:3 ; 10#6 by OGLE (Udalski et al.
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along the Galactic latitude b, ! ¼ ½(4:48 ' 2:37)þ (0:78 ' 0:84) ; b( ; 10#6, this value is consistent with previous
measurements using RCG sources and recent theoretical predictions. We determine the microlensing parameters and
select events using a model light curve that allows for flux blending. Photometric quality delivered by difference image
analysis (DIA) combined with the 1B3 median seeing of the OGLE-II images are sufficient to constrain and reject the
majority of strong blends. We find that!38% of the OGLE-II events that appear to have RCG sources are actually due
to much fainter stars blended with a bright companion. We show explicitly that model fits without blending result
in similar ! estimates through partial cancellation of contributions from higher detection efficiency, underestimated
timescales, and a larger number of selected events. The near cancellation of the optical depth bias and the fact that
microlensing event selection based on models without blending discriminates against blends have been utilized by
previous analyses based on RCG sources. The latter approach, however, leads to biased timescale distributions and
event rates. Consequently, microlensing studies should carefully consider source confusion effects even for bright stars.
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1. INTRODUCTION

Following the suggestion of Paczyński (1991) and Griest et al.
(1991), several teams have carried out microlensing surveys
toward the Galactic bulge (GB). To date, well over 2 ; 103 mi-
crolensing events in the GB have been detected by the OGLE
(Optical Gravitational Lensing Experiment; Udalski et al. 1994,
2000; Woźniak et al. 2001; Udalski 2003), MOA (Microlensing
Observations inAstrophysics; Bond et al. 2001; Sumi et al. 2003b),
MACHO (Alcock et al. 1997, 2000b), and EROS (Expérience
pour la Recherche d’Objets Sombres; Afonso et al. 2003) groups.
Thousands of detections are expected in the upcoming years from
MOA5 and OGLE-III.6 It is now well understood that these obser-
vations are useful for studying the structure, kinematics, and dy-
namics of the Galaxy, and the stellar mass function, as the event
rate and timescale distributions are related to themasses and veloc-
ities of lens objects.

The magnification of a microlensing event is described by
(Paczyński 1986)

A(u) ¼ u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p ; ð1Þ

where u is the projected separation of the source and lens in
units of the Einstein radius RE, which is given by

RE(M ; x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GM

c2
Dsx(1# x)

r
; ð2Þ

where M is the lens mass, x ¼ Dl/Ds is the normalized lens dis-
tance, andDl andDs are the observer-lens and the observer-source
distances. The time variation of u ¼ u(t) is

u(t) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2min þ
t # t0
tE

" #2
s

; ð3Þ

where umin, t0, tE ¼ RE/vt, and vt are, respectively, the minimum
impact parameter in units of RE, the time of maximum magni-
fication, the event timescale, and the transverse velocity of the
lens relative to the line of sight toward the source star. From light
curve alone, one can determine the values of umin, t0, and tE, but
not the values of M, x, or vt.
Microlensing optical depth (the total cross section for micro-

lensing) is directly related to the mass density of compact objects
along the line of sight (Paczyński 1996). However, previous re-
sults have been controversial. Paczyński (1991) and Griest et al.
(1991) first predicted the optical depth of ! ! 5 ; 10#7, assum-
ing that all events were associated with known disk stars. After
the first several bulge events were reported by OGLE (Udalski
et al. 1994), the high event rate prompted Kiraga & Paczyński
(1994) to evaluate the contribution of bulge stars in addition to
the disk stars. They estimated ! ! 8:5 ; 10#7 and concluded that
the value could be about twice as large if the bulge were elon-
gated along the line of sight. Nevertheless, the first measurements
of the optical depth, ! ! 3:3 ; 10#6 by OGLE (Udalski et al.
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ABSTRACT

We present a measurement of the microlensing optical depth toward the Galactic bulge based on 4 years of the
OGLE-II survey. We consider only bright sources in the extended red clump giant (RCG) region of the color-
magnitude diagram, in 20 bulge fields covering!5 deg2 between 0" < l < 3" and#4" < b < #2". Using a sample
of 32 events we find ! ¼ 2:55þ0:57

#0:46 ; 10
#6 at (l; b) ¼ (1N16; #2N75). Taking into account the measured gradient

along the Galactic latitude b, ! ¼ ½(4:48 ' 2:37)þ (0:78 ' 0:84) ; b( ; 10#6, this value is consistent with previous
measurements using RCG sources and recent theoretical predictions. We determine the microlensing parameters and
select events using a model light curve that allows for flux blending. Photometric quality delivered by difference image
analysis (DIA) combined with the 1B3 median seeing of the OGLE-II images are sufficient to constrain and reject the
majority of strong blends. We find that!38% of the OGLE-II events that appear to have RCG sources are actually due
to much fainter stars blended with a bright companion. We show explicitly that model fits without blending result
in similar ! estimates through partial cancellation of contributions from higher detection efficiency, underestimated
timescales, and a larger number of selected events. The near cancellation of the optical depth bias and the fact that
microlensing event selection based on models without blending discriminates against blends have been utilized by
previous analyses based on RCG sources. The latter approach, however, leads to biased timescale distributions and
event rates. Consequently, microlensing studies should carefully consider source confusion effects even for bright stars.
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(Paczyński 1986)

A(u) ¼ u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p ; ð1Þ

where u is the projected separation of the source and lens in
units of the Einstein radius RE, which is given by

RE(M ; x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GM

c2
Dsx(1# x)

r
; ð2Þ

where M is the lens mass, x ¼ Dl/Ds is the normalized lens dis-
tance, andDl andDs are the observer-lens and the observer-source
distances. The time variation of u ¼ u(t) is

u(t) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2min þ
t # t0
tE

" #2
s

; ð3Þ

where umin, t0, tE ¼ RE/vt, and vt are, respectively, the minimum
impact parameter in units of RE, the time of maximum magni-
fication, the event timescale, and the transverse velocity of the
lens relative to the line of sight toward the source star. From light
curve alone, one can determine the values of umin, t0, and tE, but
not the values of M, x, or vt.
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along the line of sight (Paczyński 1996). However, previous re-
sults have been controversial. Paczyński (1991) and Griest et al.
(1991) first predicted the optical depth of ! ! 5 ; 10#7, assum-
ing that all events were associated with known disk stars. After
the first several bulge events were reported by OGLE (Udalski
et al. 1994), the high event rate prompted Kiraga & Paczyński
(1994) to evaluate the contribution of bulge stars in addition to
the disk stars. They estimated ! ! 8:5 ; 10#7 and concluded that
the value could be about twice as large if the bulge were elon-
gated along the line of sight. Nevertheless, the first measurements
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• Rises if lensing events between bulge stars is taken into account

Kiraga & Paczynski 1994

• Measured optical depth is considerably higher...

1994) and ! ! 3:9þ1:8
#1:2 ; 10

#6 by MACHO (Alcock et al. 1997),
were well above the predictions. Recent studies based on differ-
ence image analysis (DIA)—less sensitive to the systematics
of blending in crowded fields—also found large optical depths,
! ¼ 3:23þ0:52

#0:50 ; 10
#6 at (l; b) ¼ (2N68; #3N35) from 99 events

by MACHO (Alcock et al. 2000b) and ! ¼ 3:36þ1:11
#0:81 ; 10

#6

at (l; b) ¼ (3N0; #3N8) from 28 events by MOA (Sumi et al.
2003b). The latter values were adjusted for the presence of the fore-
ground disk stars, and the uncorrected measurements are consider-
ably lower, i.e., ! ¼ 2:43þ0:39

#0:38 ; 10
#6 and ! ¼ 2:59þ0:84

#0:64 ; 10
#6,

respectively.
To explain high optical depths, a number of authors have sug-

gested the presence of a bar oriented along our line of sight to the
GB (Paczyński et al. 1994; Zhao et al. 1995), and have adopted
various values of the bar orientation and mass (Han & Gould
1995; Zhao &Mao 1996; Peale 1998; Gyuk 1999). The resulting
values are in the range ! ¼ 0:8 2:0 ; 10#6. Binney et al. (2000)
have shown that high optical depth measurements available at the
time could not be easily reconciled with our general understand-
ing of the Galactic dynamics, and that the standard models of the
Galaxy would need to be revised.

Alcock et al. (1997) raised the possibility of a systematic bias
in the optical depth measurement due to the difficulties of mea-
suring tE associated with merging unresolved sources. When the
actual source baseline flux is unknown, tE and umin are degenerate
in relatively low signal-to-noise ratio (S/N) events (e.g., Woźniak
& Paczyński 1997; Han 1999; Bond et al. 2001; Gould & An
2002). Popowski et al. (2001) postulated that optical depth can
be estimated without a bias due to blending by using only events
with bright source stars, such as red clump giants (RCGs), in
which blending is assumed to be negligible. Although the first
measurements by Alcock et al. (1997) gave a high value of ! !
3:9þ1:8

#1:2 ; 10
#6, recent measurements based on events with RCG

sources have returned lower optical depths, 2:0 % 0:4 ; 10#6 at
(l; b) ¼ (3N9; #3N8) from 50 events by MACHO (Popowski
et al. 2001), 0:94 % 0:29 ; 10#6 at (l; b) ¼ (2N5; #4N0) from 16
events by EROS (Afonso et al. 2003) and 2:17þ0:47

#0:38 ; 10
#6 at

(l; b) ¼ (1N50; #2N68) from 42 events by MACHO (Popowski
et al. 2005).

In this paper we present a measurement of the microlensing
optical depth in the direction of the GB based on the full 4 yr ex-
tent of the OGLE-II monitoring data. For analysis we select only
high-S/N events with bright apparent source stars in the RCG
region. In order to better understand the systematics of this com-
plex measurement, we proceed without assuming that blending
is negligible. In the first part of the paper we present the photo-
metric data (x 2), selection of microlensing events (x 3), com-
putation of the detection efficiency (x 4), and estimation of the
optical depth (x 5). This is followed, in the second part (x 6 and
x 7), by a description of various cross-checks and general discus-
sion. We primarily examine source confusion and the effect of
reintroducing the assumption of negligible blending in our bright
event sample.

2. DATA

The data used in this analysis were collected between 1997
and 2000, during the second phase of the OGLE experiment. All
observations were made with the 1.3 m Warsaw telescope lo-
cated at the Las Campanas Observatory, Chile. The observatory
is operated by the Carnegie Institution of Washington. The ’’first
generation’’ camera has a SITe 2048 ; 2048 pixel CCD detector
with pixel size of 24 "m, resulting in a 0B417 pixel#1 scale. Im-
ages of the GB fields were taken in drift-scanmode at ’’medium’’
readout speed with the gain 7.1 e# ADU#1 and readout noise

of 6.3 e#. A single 2048 ; 8192 pixel frame covers an area of
0N24 ; 0N95. Saturation level is about 55,000 ADU. Details of the
instrumentation setup can be found in Udalski et al. (1997).

In this paper we use I-band images for the 20 central OGLE-II
fields in the GB. Between 138 and 555 frames were available in
each field. The remaining 29 fields are either more difficult to
model (because of a prominent disk component), or cannot be
treated as co-located with the rest and averaged. The event num-
ber statistics in those fields is not sufficient for an independent
determination of ! . A reliable map of the microlensing optical
depth must await the full analysis of the OGLE-III data. The cen-
ters of the analyzed fields are listed in Table 1. The time baseline
of the survey is almost 4 yr. There are gaps between the observ-
ing seasons when GB cannot be observed from Earth, each about
3 months long. The median seeing was 1B3. Astrometric and
photometric scales are defined by multicolor maps of Udalski
et al. (2002), comprising positions and VI-band photometry of
!3 ; 107 stars in all 49 GB fields. Photometric zero points are
accurate to about 0.04 mag.

We adopt a hybrid approach to photometry with source detec-
tion and centroiding on reference images using DoPHOT pack-
age (Schechter et al. 1993), combined with the DIA photometry
to lower the point-to-point scatter (Alard & Lupton 1998; Alard
2000;Woźniak 2000). A high-S/N reference image for each field
was taken to be a mean of 20 frames with the best overall seeing
and background. To obtain a difference frame, we convolve the
reference image with the PSF matching kernel and subtract the
result from a given survey frame, after interpolating to the same
pixel grid. PSF photometry on difference frames is performed
only for objects detected on the reference image using fixed posi-
tions found by DoPHOT.

3. MICROLENSING EVENT SELECTION

Criteria for selecting candidate microlensing events are sum-
marized in Table 2.

TABLE 1

OGLE-II GB Fields Contributing to the Present Optical Depth Analysis

Field

l

(deg)

b

(deg) Ns Nlens

!
(10#6)

#!
(10#6)

1............ 1.08 #3.62 35844 0 0.000000 0.000000

2............ 2.23 #3.46 38278 1 2.483758 2.483758

3............ 0.11 #1.93 80976 4 4.286616 2.226285

4............ 0.43 #2.01 78454 5 3.145996 1.494732

20.......... 1.68 #2.47 58891 1 1.239517 1.239517

21.......... 1.80 #2.66 52930 0 0.000000 0.000000

22.......... #0.26 #2.95 50732 1 0.854807 0.854807

23.......... #0.50 #3.36 42205 0 0.000000 0.000000

30.......... 1.94 #2.84 47974 6 9.543987 4.183375

31.......... 2.23 #2.94 45825 1 2.261020 2.261020

32.......... 2.34 #3.14 40476 1 0.937948 0.937948

33.......... 2.35 #3.66 34461 2 10.415521 7.933656

34.......... 1.35 #2.40 61515 2 4.087111 2.890040

35.......... 3.05 #3.00 41146 2 3.211394 2.350345

36.......... 3.16 #3.20 37922 0 0.000000 0.000000

37.......... 0.00 #1.74 85289 2 2.211746 1.772319

38.......... 0.97 #3.42 40148 2 2.876526 2.246087

39.......... 0.53 #2.21 72842 3 1.621968 0.967699

45.......... 0.98 #3.94 32823 0 0.000000 0.000000

46.......... 1.09 #4.14 29626 0 0.000000 0.000000

Notes.—Also given are Galactic coordinates of the field center (l, b), number
of source stars (Ns), number of microlensing events (Nlens), optical depth (!), and
its error (#!).

OGLE-II BULGE OPTICAL DEPTH WITH BRIGHT SOURCES 241
1994) and ! ! 3:9þ1:8

#1:2 ; 10
#6 by MACHO (Alcock et al. 1997),

were well above the predictions. Recent studies based on differ-
ence image analysis (DIA)—less sensitive to the systematics
of blending in crowded fields—also found large optical depths,
! ¼ 3:23þ0:52

#0:50 ; 10
#6 at (l; b) ¼ (2N68; #3N35) from 99 events

by MACHO (Alcock et al. 2000b) and ! ¼ 3:36þ1:11
#0:81 ; 10

#6

at (l; b) ¼ (3N0; #3N8) from 28 events by MOA (Sumi et al.
2003b). The latter values were adjusted for the presence of the fore-
ground disk stars, and the uncorrected measurements are consider-
ably lower, i.e., ! ¼ 2:43þ0:39

#0:38 ; 10
#6 and ! ¼ 2:59þ0:84

#0:64 ; 10
#6,

respectively.
To explain high optical depths, a number of authors have sug-

gested the presence of a bar oriented along our line of sight to the
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ence image analysis (DIA)—less sensitive to the systematics
of blending in crowded fields—also found large optical depths,
! ¼ 3:23þ0:52

#0:50 ; 10
#6 at (l; b) ¼ (2N68; #3N35) from 99 events

by MACHO (Alcock et al. 2000b) and ! ¼ 3:36þ1:11
#0:81 ; 10

#6

at (l; b) ¼ (3N0; #3N8) from 28 events by MOA (Sumi et al.
2003b). The latter values were adjusted for the presence of the fore-
ground disk stars, and the uncorrected measurements are consider-
ably lower, i.e., ! ¼ 2:43þ0:39

#0:38 ; 10
#6 and ! ¼ 2:59þ0:84

#0:64 ; 10
#6,

respectively.
To explain high optical depths, a number of authors have sug-

gested the presence of a bar oriented along our line of sight to the
GB (Paczyński et al. 1994; Zhao et al. 1995), and have adopted
various values of the bar orientation and mass (Han & Gould
1995; Zhao &Mao 1996; Peale 1998; Gyuk 1999). The resulting
values are in the range ! ¼ 0:8 2:0 ; 10#6. Binney et al. (2000)
have shown that high optical depth measurements available at the
time could not be easily reconciled with our general understand-
ing of the Galactic dynamics, and that the standard models of the
Galaxy would need to be revised.

Alcock et al. (1997) raised the possibility of a systematic bias
in the optical depth measurement due to the difficulties of mea-
suring tE associated with merging unresolved sources. When the
actual source baseline flux is unknown, tE and umin are degenerate
in relatively low signal-to-noise ratio (S/N) events (e.g., Woźniak
& Paczyński 1997; Han 1999; Bond et al. 2001; Gould & An
2002). Popowski et al. (2001) postulated that optical depth can
be estimated without a bias due to blending by using only events
with bright source stars, such as red clump giants (RCGs), in
which blending is assumed to be negligible. Although the first
measurements by Alcock et al. (1997) gave a high value of ! !
3:9þ1:8

#1:2 ; 10
#6, recent measurements based on events with RCG

sources have returned lower optical depths, 2:0 % 0:4 ; 10#6 at
(l; b) ¼ (3N9; #3N8) from 50 events by MACHO (Popowski
et al. 2001), 0:94 % 0:29 ; 10#6 at (l; b) ¼ (2N5; #4N0) from 16
events by EROS (Afonso et al. 2003) and 2:17þ0:47

#0:38 ; 10
#6 at

(l; b) ¼ (1N50; #2N68) from 42 events by MACHO (Popowski
et al. 2005).

In this paper we present a measurement of the microlensing
optical depth in the direction of the GB based on the full 4 yr ex-
tent of the OGLE-II monitoring data. For analysis we select only
high-S/N events with bright apparent source stars in the RCG
region. In order to better understand the systematics of this com-
plex measurement, we proceed without assuming that blending
is negligible. In the first part of the paper we present the photo-
metric data (x 2), selection of microlensing events (x 3), com-
putation of the detection efficiency (x 4), and estimation of the
optical depth (x 5). This is followed, in the second part (x 6 and
x 7), by a description of various cross-checks and general discus-
sion. We primarily examine source confusion and the effect of
reintroducing the assumption of negligible blending in our bright
event sample.

2. DATA

The data used in this analysis were collected between 1997
and 2000, during the second phase of the OGLE experiment. All
observations were made with the 1.3 m Warsaw telescope lo-
cated at the Las Campanas Observatory, Chile. The observatory
is operated by the Carnegie Institution of Washington. The ’’first
generation’’ camera has a SITe 2048 ; 2048 pixel CCD detector
with pixel size of 24 "m, resulting in a 0B417 pixel#1 scale. Im-
ages of the GB fields were taken in drift-scanmode at ’’medium’’
readout speed with the gain 7.1 e# ADU#1 and readout noise

of 6.3 e#. A single 2048 ; 8192 pixel frame covers an area of
0N24 ; 0N95. Saturation level is about 55,000 ADU. Details of the
instrumentation setup can be found in Udalski et al. (1997).

In this paper we use I-band images for the 20 central OGLE-II
fields in the GB. Between 138 and 555 frames were available in
each field. The remaining 29 fields are either more difficult to
model (because of a prominent disk component), or cannot be
treated as co-located with the rest and averaged. The event num-
ber statistics in those fields is not sufficient for an independent
determination of ! . A reliable map of the microlensing optical
depth must await the full analysis of the OGLE-III data. The cen-
ters of the analyzed fields are listed in Table 1. The time baseline
of the survey is almost 4 yr. There are gaps between the observ-
ing seasons when GB cannot be observed from Earth, each about
3 months long. The median seeing was 1B3. Astrometric and
photometric scales are defined by multicolor maps of Udalski
et al. (2002), comprising positions and VI-band photometry of
!3 ; 107 stars in all 49 GB fields. Photometric zero points are
accurate to about 0.04 mag.

We adopt a hybrid approach to photometry with source detec-
tion and centroiding on reference images using DoPHOT pack-
age (Schechter et al. 1993), combined with the DIA photometry
to lower the point-to-point scatter (Alard & Lupton 1998; Alard
2000;Woźniak 2000). A high-S/N reference image for each field
was taken to be a mean of 20 frames with the best overall seeing
and background. To obtain a difference frame, we convolve the
reference image with the PSF matching kernel and subtract the
result from a given survey frame, after interpolating to the same
pixel grid. PSF photometry on difference frames is performed
only for objects detected on the reference image using fixed posi-
tions found by DoPHOT.

3. MICROLENSING EVENT SELECTION

Criteria for selecting candidate microlensing events are sum-
marized in Table 2.

TABLE 1

OGLE-II GB Fields Contributing to the Present Optical Depth Analysis

Field

l

(deg)

b

(deg) Ns Nlens

!
(10#6)

#!
(10#6)

1............ 1.08 #3.62 35844 0 0.000000 0.000000

2............ 2.23 #3.46 38278 1 2.483758 2.483758

3............ 0.11 #1.93 80976 4 4.286616 2.226285

4............ 0.43 #2.01 78454 5 3.145996 1.494732

20.......... 1.68 #2.47 58891 1 1.239517 1.239517

21.......... 1.80 #2.66 52930 0 0.000000 0.000000

22.......... #0.26 #2.95 50732 1 0.854807 0.854807

23.......... #0.50 #3.36 42205 0 0.000000 0.000000

30.......... 1.94 #2.84 47974 6 9.543987 4.183375

31.......... 2.23 #2.94 45825 1 2.261020 2.261020

32.......... 2.34 #3.14 40476 1 0.937948 0.937948

33.......... 2.35 #3.66 34461 2 10.415521 7.933656

34.......... 1.35 #2.40 61515 2 4.087111 2.890040

35.......... 3.05 #3.00 41146 2 3.211394 2.350345

36.......... 3.16 #3.20 37922 0 0.000000 0.000000

37.......... 0.00 #1.74 85289 2 2.211746 1.772319

38.......... 0.97 #3.42 40148 2 2.876526 2.246087

39.......... 0.53 #2.21 72842 3 1.621968 0.967699

45.......... 0.98 #3.94 32823 0 0.000000 0.000000

46.......... 1.09 #4.14 29626 0 0.000000 0.000000

Notes.—Also given are Galactic coordinates of the field center (l, b), number
of source stars (Ns), number of microlensing events (Nlens), optical depth (!), and
its error (#!).
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MACHO

MOA

• Accepted explanation is that this implies the existence of a bar in our galaxy 
aligned in the direction of the galactic center



Observations: MACHO survey

Alcock et al. 2000 
(MACHO collaboration)
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FIG. 12.ÈLikelihood contours for MACHO mass m and halo fraction f
for model S, which has a typical size halo. See A96 for details of the model.
The plus sign shows the maximum-likelihood estimate, and the contours
enclose regions of 68%, 90%, 95%, and 99% probability. The panels are
labeled according to which set of selection criteria (A or B) is used, and
whether or not a LMC halo with MACHO fraction f is included.

FIG. 13.ÈSame as Fig. 12, but for model B

FIG. 14.ÈSame as Fig. 12, but for model F

and a most likely halo fractionmML \ 0.60~0.20`0.28 M
_

, fML \
where subscript ““ ML ÏÏ here indicates maximum0.21~0.07`0.10,

likelihood. The errors given are at the 68% conÐdence level.
The values for set B are andmML \ 0.79~0.24`0.32 M

_
fML \

For model S, the 95% conÐdence level contour0.24~0.08`0.09.
includes halo fractions from about 8% to about 50%, and
MACHOs masses from about 0.12 to 1.1 depending onM

_
,

the selection criteria and LMC model used. The likelihood
method gives an optical depth for the halo population of

almost independent of the selection criteria,1.1~0.4`0.5 ] 10~7
the LMC model, and the Galactic model.

There are several important comments to be made. First,
sets A and B give results that are remarkably similar, imply-
ing that the systematic error introduced by our selection
criteria methodology is small. The important parameters of
estimated MACHO halo fraction are nearly identical using
the two di†erent sets of events and efficiency determi-
nations. The estimated typical MACHO mass does vary
between the two sets of events, but the values lie within 1 p
of each other. This di†erence in lens mass comes partially
from the rejection of event 22 from set A.

Second, consistent with our optical depth estimates, the
values of the halo fraction are approximately a factor of 2
lower than we found in A97. As discussed in ° 6.1.2, this is
mainly a result of Ðnding more events per unit exposure
during the Ðrst 2 yr, but it is also due to changes in effi-
ciency, etc. We note that the optical depths reported in
Table 13 are the estimated MACHO contribution, and do
not include the background of stellar microlensing. The
contributions from stellar background are shown in Table
12. The values found here are quite similar to those found
directly in ° 6.1.

Third, our new conÐdence intervals are substantially
smaller than those of A97 due to the larger number of
events. Even though the central values have changed, our
new most likely values lie within the A97 90% conÐdence
region. The shift in central values is somewhat larger than
one might have naively expected, and while the shift could
be statistical, the more likely reason is a previous underesti-
mation of systematic errors.

Next, for model S with a large LMC disk but no LMC
dark halo, and set A, we expect a total of 3.0 events from
stellar background sources, with the majority coming from
LMC self-lensing. For the same model and set B, the
number of expected background events is 3.9. In both cases,
the predicted number of background events is substantially
below the number of detected events. Thus, if these models
are correct, the microlensing events are very unlikely to
come from the known stellar populations.

For the case of a LMC halo plus LMC disk, LMC disk
self-lensing must be smaller, since part of the LMC rotation
curve is supported by the halo. In this case, some of the
lensing can come from the dark halo. This changes the
predictions of MACHO halo fraction, since the LMC halo
contributes very little to the total mass of the Milky Way,
but relatively more to the microlensing. As shown in Table
13, for model S we Ðnd 1.1 events from the LMC halo, and
2.1 background events using set A. For set B we Ðnd 1.4
LMC halo events, with 2.7 background stellar events.
Again, the expected number of background events is signiÐ-
cantly smaller than the number of observed events. When a
LMC dark halo is included, the events from the LMC halo
count toward dark matter that is not uniformly spread
across the sky. The predicted values change from f \ 0.21 to

17 microlensing events towards LMC
after ~5.7 years watching 11.9 million stars
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ABSTRACT
We report on our search for microlensing toward the Large Magellanic Cloud (LMC). Analysis of 5.7

yr of photometry on 11.9 million stars in the LMC reveals 13È17 microlensing events. A detailed treat-
ment of our detection efficiency shows that this is signiÐcantly more than the D2È4 events expected
from lensing by known stellar populations. The timescales of the events range from 34 to 230 days.(tü )
We estimate the microlensing optical depth toward the LMC from events with days to be2 \ tü \ 400

with an additional 20% to 30% of systematic error. The spatial distribution ofq2400 \ 1.2~0.3`0.4 ] 10~7,
events is mildly inconsistent with LMC/LMC disk self-lensing, but is consistent with an extended lens
distribution such as a Milky Way or LMC halo. Interpreted in the context of a Galactic dark matter
halo, consisting partially of compact objects, a maximum-likelihood analysis gives a MACHO halo frac-
tion of 20% for a typical halo model with a 95% conÐdence interval of 8%È50%. A 100% MACHO
halo is ruled out at the 95% conÐdence level for all except our most extreme halo model. Interpreted as
a Galactic halo population, the most likely MACHO mass is between 0.15 and 0.9 depending onM

_
,

the halo model, and the total mass in MACHOs out to 50 kpc is found to be indepen-9~3`4 ] 1010 M
_

,
dent of the halo model. These results are marginally consistent with our previous results, but are lower
by about a factor of 2. This is mostly due to Poisson noise, because with 3.4 times more exposure and
increased sensitivity to long-timescale events, we did not Ðnd the expected factor of D4 more events. In
addition to a larger data set, this work also includes an improved efficiency determination, improved
likelihood analysis, and more thorough testing of systematic errors, especially with respect to the treat-
ment of potential backgrounds to microlensing. We note that an important source of background are
supernovae (SNe) in galaxies behind the LMC.
Subject headings : dark matter È Galaxy : halo È Galaxy : structure È gravitational lensing È

stars : low-mass, brown dwarfs È white dwarfs
On-line material : Color Ðgures

1. INTRODUCTION

Following the suggestion of (1986), severalPaczyn" ski
groups are now engaged in searches for dark matter in the
form of massive compact halo objects (MACHOs) using
gravitational microlensing, and many candidate micro-
lensing events have been reported. Reviews of microlensing
in this context are given by (1996) and Roulet &Paczyn" ski
Mollerach (1996).

Previously (Alcock et al. 1997a), we conducted an
analysis of 2.1 yr of photometry of 8.5 million stars, and
found 6È8 microlensing events, implying an optical depth
toward the LMC of for the 8 event sample2.9~0.9`1.4 ] 10~7
and for the 6 event sample (Alcock et al.2.1~0.7`1.1 ] 10~7
1996a, 1997a ; hereafter A96 and A97, respectively). Inter-
preted as evidence for a MACHO contribution to the Milky
Way dark halo, this implied a MACHO mass out to 50 kpc
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MACHO constraint is wierd.  Suggests
~0.2 galaxy mass in ~0.5 Msol objects.  
Hard to explain...

Larger than expected if no MACHOs...

What is the dark matter?
MACHO=Massive Compact Halo Object
WIMP = Weakly Interacting Massive Particle

Too light to be white dwarves, neutron stars.



Binary lensing
About 10% of microlensing events are expected to be due to binary lenses

Double peaked light curves



Planetary microlensingPlanetary microlensing
OGLE 2003-BLG-235 - first planet detected via microlensing

Mstar~0.36 Msol Mplanet~3.0 Mjupiter separation~3AU distance~5kpc



Galaxy lensing



Singular Isothermal Sphere

Galaxy lenses require that we account for the distributed nature of the mass.

Simple model assumes that stars and other mass behaves like particles of ideal gas

3.1 Lensing by a Singular Isothermal Sphere

A simple model for the mass distribution in galaxies assumes that the stars and other mass com-
ponents behave like particles of an ideal gas, confined by their combined, spherically symmetric
gravitational potential. The equation of state of the “particles”, henceforth called stars for sim-
plicity, takes the form

p =
ρ kT

m
, (38)

where ρ and m are the mass density and the mass of the stars. In thermal equilibrium, the
temperature T is related to the one-dimensional velocity dispersion σv of the stars through

mσ2
v = kT . (39)

The temperature, or equivalently the velocity dispersion, could in general depend on radius r, but
it is usually assumed that the stellar gas is isothermal, so that σv is constant across the galaxy.
The equation of hydrostatic equilibrium then gives

p′

ρ
= −

GM(r)

r2
, M ′(r) = 4π r2 ρ , (40)

where M(r) is the mass interior to radius r, and primes denote derivatives with respect to r. A
particularly simple solution of eqs. (38) through (40) is

ρ(r) =
σ2

v

2πG

1

r2
. (41)

This mass distribution is called the singular isothermal sphere. Since ρ ∝ r−2, the mass M(r)
increases ∝ r, and therefore the rotational velocity of test particles in circular orbits in the gravi-
tational potential is

v2
rot(r) =

GM(r)

r
= 2 σ2

v = constant . (42)

The flat rotation curves of galaxies are naturally reproduced by this model.
Upon projecting along the line-of-sight, we obtain the surface mass density

Σ(ξ) =
σ2

v

2G

1

ξ
, (43)

where ξ is the distance from the center of the two-dimensional profile. Referring to eq. (11), we
immediately obtain the deflection angle

α̂ = 4π
σ2

v

c2
= (1.′′4)

( σv

220 kms−1

)2

, (44)

which is independent of ξ and points toward the center of the lens. The Einstein radius of the
singular isothermal sphere follows from eq. (20),

θE = 4π
σ2

v

c2

Dds

Ds
= α̂

Dds

Ds
= α . (45)

Due to circular symmetry, the lens equation is essentially one-dimensional. Multiple images are
obtained only if the source lies inside the Einstein ring, i.e. if β < θE. When this condition is
satisfied, the lens equation has the two solutions

θ± = β ± θE . (46)

The images at θ±, the source, and the lens all lie on a straight line. Technically, a third image
with zero flux is located at θ = 0. This third image acquires a finite flux if the singularity at the
center of the lens is replaced by a core region with a finite density.

The magnifications of the two images follow from eq. (26),

µ± =
θ±
β

= 1 ±
θE

β
=

(

1 ∓
θE

θ±

)−1

. (47)

If the source lies outside the Einstein ring, i.e. if β > θE, there is only one image at θ = θ+ = β+θE.
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If the source lies outside the Einstein ring, i.e. if β > θE, there is only one image at θ = θ+ = β+θE.
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SIS and lensing equation
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τ(LMC) ∼ 10−7 (27)

τ(Gal.Bulge.) ∼ 10−6 (28)

}

Galaxy lensing

θE = 1.6”
( σv

200 km s−1

)2
(

Dds

Ds

)
(29)

M(θE) = π(DLθE)2Σcr (30)

H0∆τ = const (31)

4

τ(LMC) ∼ 10−7 (27)

τ(Gal.Bulge.) ∼ 10−6 (28)

}

Galaxy lensing

θE = 1.6”
( σv

200 km s−1

)2
(

Dds

Ds

)
(29)

α = α̂
Dds

Ds
= 4π

σ2
v

c2

Dds

Ds
= θE (30)

M(θE) = π(DLθE)2Σcr (31)

H0∆τ = const (32)

2

∇⊥Φ(r) =
∂Φ
∂b

=
GMb

(b2 + z2)3/2
(7)

α̂ = 2
∫
∇⊥Φ(r) (8)

= 2
∫ ∞

−∞
dz

GMb

(b2 + z2)3/2
(9)

=
2GM

b

∫ ∞

−∞

dx

(1 + x2)3/2
(10)

=
4GM

b
(11)

α̂ =
4GM

b
(12)

∆t = −
∫

Φ ds (13)

Lens equation:

β = θ −α(θ) (14)

For strong lensing, get two images as for point mass 

Magnification can be very large for sources aligned with line to lens - Einstein ring again

Separation of the images is typically a few arc seconds for galaxy lenses

4

τ(LMC) ∼ 10−7 (27)

τ(Gal.Bulge.) ∼ 10−6 (28)

}

Galaxy lensing

θE = 1.6”
( σv

200 km s−1

)2
(

Dds

Ds

)
(29)

α = α̂
Dds

Ds
= 4π

σ2
v

c2

Dds

Ds
= θE (30)

β = θ − θE
θ

|θ| (31)

M(θE) = π(DLθE)2Σcr (32)

H0∆τ = const (33)

Although a good simple model in general the core of a galaxy would not be singular...
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Elliptical lenses 
Elliptical lenses (or circular lens+external sheer) lead to new lensing configurations
Point caustic expands into diamond shape
Images no longer constrained to lie on a line
Source behind lens can lead to five images (one de-magnified)
On source crossing caustic images merge and disappear

FIG. 19.—Compact source moving away from the center of an elliptical lens. Left panel: source crossing a fold caustic; right panel: source crossing
a cusp caustic. Within each panel, the diagram on the left shows critical lines and image positions and the diagram on the right shows caustics and
source positions.

            

FIG. 21.—Shows an extended source which is mapped into two re-
solved images. While the source and the individual magnification ma-
tricesM1 andM2 are not observable, the relative magnification matrix

M12 M 1
1

M2 can be measured. This matrix provides four indepen-
dent constraints on the lens model.

face brightness (to within observational errors). This pro-
vides a large number of constraints which can be used to
reconstruct the shape of the original source and at the same
time optimize a parameterized lens model.

2 The LensClean technique (Kochanek& Narayan 1992) is a
generalization of the Ring Cycle algorithm which uses the
Clean algorithm to allow for the finite beam of the radio
telescope.

3 LensMEM (Wallington, Narayan, & Kochanek 1994;
Wallington, Kochanek, & Narayan 1996) is analogous
to LensClean, but uses the Maximum Entropy Method
instead of Clean.

3.6.2. Statistical Modeling of Lens Populations

The statistics of lensedQSOs can be used to infer statistical prop-
erties of the lens population. In this approach, parameterized
models of the galaxy and QSO populations in the universe are
used to predict the number of lensed QSOs expected to be ob-
served in a given QSO sample and to model the distributions of
various observables such as the image separation, flux ratio, lens
redshift, source redshift, etc. An important aspect of such stud-
ies is the detailed modeling of selection effects in QSO surveys
(Kochanek 1993a) and proper allowance for magnification bias
(Narayan & Wallington 1993). The lensing galaxies are usually
modeled either as isothermal spheres or in terms of simple ellipti-
cal potentials, with an assumed galaxy luminosity function and a
relation connecting luminosity and galaxy mass (or velocity dis-
persion). TheQSOnumber-countas a functionof redshift should
be known since it strongly influences the lensing probability.

Statistical studies have been fairly successful in determining
properties of the galaxy population in the universe, especially at
moderate redshifts where direct observations are difficult. Use-
ful results have been obtained on the number density, velocity
dispersions, core radii, etc. of lenses. Resolved radio QSOs pro-
vide additional information on the internal structure of galaxy
lenses such as their ellipticities (Kochanek 1996b). By and large,
the lens population required to explain the statistics of multiply
imaged optical and radioQSOs turns out to be consistent with the
locally observed galaxy population extrapolated to higher red-
shifts (Kochanek 1993b; Maoz & Rix 1993; Surdej et al. 1993;
see below).

So far, statistical studies of galaxy lensing neglected the con-
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Mass determinations

• As we saw earlier, when we have multiple images they tend to hover around 
the Einstein radius.  We can use this to estimate the mass of the galaxy since 
the mean surface density inside the Einstein radius = critical mean density

3
Point mass lens equation:

α(θ) =
4GM

c2

DLS

DsDL

θ

|θ|2 (18)

θE =
√

4GM

c2

DLS

DsDL
(19)

β = θ − θ2
E

θ

|θ|2
(20)

Microlensing

µ ≥ 1.34 (21)

mag ≥ 0.32 (22)

τ(LMC) ∼ 10−7 (23)

τ(Gal.Bulge.) ∼ 10−6 (24)

}

Galaxy lensing

M(θE) = π(DLθE)2Σcr (25)

H0∆τ = const (26)

• This is a fairly simple estimate and in reality one would use the observed 
images to constrain a more detailed model of the lens e.g. as an isothermal 
ellipsoid (this is helped a lot if the source is extended since then more than 
four point images can be used to constrain the lens model e.g. Suyu+ (2009))

• Such mass constraints can be accurate to a few percent 

e.g. M=(1.08±0.02)h-1*1010 Msol for QSO 2237+0305 within 0.9”

Since the overall scale of the lens depends upon cosmological distances there 
is a dependence on H0.



H0 determination

Arrangement of images is
purely geometric and contains
no information about scales

Use time delay to learn about
H0 

Two additional linear combinations of ψij are important, and these are the components of the
shear tensor,

γ1(#θ) =
1

2
(ψ11 − ψ22) ≡ γ(#θ) cos

[

2φ(#θ)
]

,

γ2(#θ) = ψ12 = ψ21 ≡ γ(#θ) sin
[

2φ(#θ)
]

.

(57)

With these definitions, the Jacobian matrix can be written

A =

(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)

= (1 − κ)

(

1 0
0 1

)

− γ

(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)

.

(58)

The meaning of the terms convergence and shear now becomes intuitively clear. Convergence
acting alone causes an isotropic focusing of light rays, leading to an isotropic magnification of a
source. The source is mapped onto an image with the same shape but larger size. Shear introduces
anisotropy (or astigmatism) into the lens mapping; the quantity γ = (γ2

1 + γ2
2)1/2 describes the

magnitude of the shear and φ describes its orientation. As shown in Fig. 13, a circular source of
unit radius becomes, in the presence of both κ and γ, an elliptical image with major and minor
axes

(1 − κ − γ)−1 , (1 − κ + γ)−1 . (59)

The magnification is

µ = detM =
1

detA
=

1

[(1 − κ)2 − γ2]
. (60)

Note that the Jacobian A is in general a function of position #θ.

Figure 13: Illustration of the effects of convergence and shear on a circular source. Convergence
magnifies the image isotropically, and shear deforms it to an ellipse.

3.3 Gravitational Lensing via Fermat’s Principle

3.3.1 The Time-Delay Function

The lensing properties of model gravitational lenses are especially easy to visualize by application of
Fermat’s principle of geometrical optics (Nityananda 1984, unpublished; Schneider 1985; Blandford
& Narayan 1986; Nityananda & Samuel 1992). From the lens equation (14) and the fact that the
deflection angle is the gradient of the effective lensing potential ψ, we obtain

(#θ − #β) − #∇θψ = 0 . (61)

This equation can be written as a gradient,

#∇θ

[

1

2
(#θ − #β)2 − ψ

]

= 0 . (62)

The physical meaning of the term in square brackets becomes more obvious by considering the
time-delay function,

t(#θ) =
(1 + zd)

c

DdDs

Dds

[

1

2
(#θ − #β)2 − ψ(#θ)

]

= tgeom + tgrav .

(63)
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3
Point mass lens equation:

α(θ) =
4GM

c2

DLS

DsDL

θ

|θ|2 (18)

θE =
√

4GM

c2

DLS

DsDL
(19)

β = θ − θ2
E

θ

|θ|2
(20)

Microlensing

µ ≥ 1.34 (21)

mag ≥ 0.32 (22)

τ(LMC) ∼ 10−7 (23)

τ(Gal.Bulge.) ∼ 10−6 (24)

}

Galaxy lensing

H0∆τ = const (25)

Need multiple images and intrinsic 
variation in the source

1.Use observed images to constrain 
model of lens to get constant

2.Measure time delay and get H0

In principle, just one very well understood lens enough to give a precision constraint on Ho

4

τ(LMC) ∼ 10−7 (27)

τ(Gal.Bulge.) ∼ 10−6 (28)

}

Galaxy lensing

θE = 1.6”
( σv

200 km s−1

)2
(

Dds

Ds

)
(29)

α = α̂
Dds

Ds
= 4π

σ2
v

c2

Dds

Ds
= θE (30)

β = θ − θE
θ

|θ| (31)

DA ∝ H−1
0 (32)

M(θE) = π(DLθE)2Σcr (33)

H0∆τ = const (34)

Totally independent of other measures of H0



H0 determinations in practice
Radio time delays

RADIO TIME DELAY OF GRAVITATIONAL LENS 0957]561 65

FIG. 1.ÈComplete 6 and 4 cm light curves of gravitational lens
0957]561. The A image data are shown as triangles and the B image as
circles. The 4 cm A image has been shifted up by 8% to avoid overlap with
the B image.

taken into account. In past analyses of lensed light curves
(including Paper I), only two parameters were used in the
Ðt : the time delay and a single Ñux ratio. Conner, &Leha" r,
Burke (1992), however, have pointed out that the magniÐ-
cation varies rapidly along the B image, which causes the
VLBI core and jet components to have di†erent Ñux ratios,
with the core ratio being larger. At the resolution of the
VLA the beam includes both the core and the jet, and thus
the Ñux ratio of the VLA light curves is a composite ofRVLAthe core and jet values. The VLA light curve is the sum of
the jet (which is constant in time) and the core (which has
both variable and constant components). There are then
four physical parameters : the time delay q, the Ñux ratio of
the core the Ñux ratio of the jetRcore \ Bcore/Acore, Rjet \and the amount of Ñux density due to the jetBjet/Ajet,versus the core, i.e., for the B image.B(t) \ Bcore(t) ] BjetNote that the core can contain both constant (DC) and
variable (AC) components, i.e., Also,Bcore \ Bcore,DC ] BAC.
the DC part of the light curve is due to both the core and
the jet, i.e., BDC \ Bcore,DC ] Bjet.Press & Rybicki (1998) discuss these issues in the context
of the optical light curves of 0957]561. They point out that
the amount of constant Ñux due to the core is(Bcore,DC)
impossible to determine, since we may have not yet seen the
variable part of the core go to zero. They show that on(BAC)
a fundamental level there are only three measurable param-
eters in a pair of lensed light curves, which may be cast as
the time delay q, the core Ñux ratio and the extraRcore,constant Ñux in the B image that does not occur in the A

image,

c \ BDC
RAC

[ ADC (1)

(Press & Rybicki 1998), where is the Ñux ratio of theRACvariable component. It is useful to write c in terms of the
core and jet components of the radio images as

c \ Bjet ] Bcore,DC
Rcore

[ (Ajet ] Acore,DC) , (2)

and therefore

c \ Bjet
A 1

Rcore
[ 1

Rjet

B
, (3)

where the DC core components cancel out. The value of c
can thus be estimated from the values of andBjet, Rcore, Rjet.Since in the case of 0957]561 we have (ConnerRjet \ Rcoreet al. 1992), the value of c must be negative ; i.e., the A curve
has a larger amount of constant Ñux than the core-ratio
corrected B curve.

The values of several of the above parameters can be
estimated from observations without doing time-delay
Ðtting. Garrett et al. (1994) compiled the information on the
core Ñux ratio from VLBI and optical observations and
found the weighted average of these estimates to be Rcore \
0.75 ^ 0.02. Also, the faintest portions of the VLA light
curves set upper limits on the jet Ñux density, i.e., Bjet [ 21
mJy at 6 cm, and mJy at 4 cm. A better estimate ofBjet [ 15

can be obtained by comparing coincident VLBI andBjetVLA observations. The VLBI observations give the core
Ñux density at a particular epoch, which can be subtracted
from the VLA Ñux density to obtain the VLA jet Ñux
density. Campbell et al. (1995) report VLBI observations at
6 cm on 1987 September 28 and 1989 September 26, and by
comparing these to VLA observations occurring on the
same days we Ðnd mJy andBjet \ 11.1 ^ 0.4 Rjet \ 0.63
^ 0.03. The values for and can be combinedRcore, Rjet, Bcoreusing equation (3) to Ðnd mJy.c6 \ [2.7 ^ 0.8

The above estimates are all for the 6 cm light curves. At 4
cm there are no coincident VLBI/VLA observations, so we
cannot make similar estimates. The value of c is di†erent at
6 and 4 cm due to the di†erence in note that the ratiosBjet ;and are the same for the two bands. For a syn-Rjet Rcorechrotron spectrum, will be smaller at 6 cm than 4 cm,Bjetand thus we expect to be smaller thano c4 o o c6 o.

4. TIME-DELAY ANALYSIS METHODS

To Ðt for the three parameters q, and c (described inRcore,° 3), we used the PRHQ statistic (Press, Rybicki, & Hewitt
1992a, 1992b ; Rybicki & Press 1992, incorporating the
modiÐcations of Rybicki & Kleyna 1994 ; Press & Rybicki
1998), and the dispersion statistic (Pelt et al. 1994, 1996),
which were described in Paper I. We used linear units (mJy)
rather than the logarithmic units deÐned in Paper I. The
discrete correlation function et al. 1992) did not Ðnd(Leha" r
a strong correlation in the 4 cm light curves, so that statistic
was not used here. Gaussian Monte Carlo data were made
as described in Paper I, but now with the four physical
parameters q, and Five hundred GaussianRcore, Rjet, Bjet.Monte Carlo data sets were used to estimate the 68% con-
Ðdence intervals on the results for the real light curves,
where the Ðtted c values were compared to the input param-
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ABSTRACT
The gravitational lens 0957]561 was monitored with the Very Large Array from 1979 to 1997. The 6

cm light-curve data from 1995 to 1997 and the 4 cm data from 1990 to 1997 are reported here. At 4 cm
the intrinsic source variations occur earlier and are twice as large as the corresponding variations at 6
cm. The VLBI core and jet components have di†erent magniÐcation factors, leading to di†erent Ñux
ratios for the varying and nonvarying portions of the VLA light curves. Using both the Press, Rybicki,
& Hewitt Q (PRHQ) and dispersion statistical techniques, we determined the time delay, core Ñux ratio,
and excess nonvarying B image Ñux density. The Ðts were performed for the 4 and 6 cm light curves,
both individually and jointly, and we used Gaussian Monte Carlo data to estimate 68% statistical con-
Ðdence levels. The delay estimates from each individual wavelength were inconsistent given the formal
uncertainties, suggesting that there are unmodeled systematic errors in the analysis. We roughly estimate
the systematic uncertainty in the joint result from the di†erence between the 6 and 4 cm results, giving
409 ^ 30 days for the PRHQ statistic and 397 ^ 20 days for the dispersion statistic. These results are
consistent with the current optical time delay of 417 ^ 3 days, reconciling the long-standing di†erence
between the optical and radio light curves and between di†erent statistical analyses. The unmodeled sys-
tematic e†ects may also corrupt light curves for other lenses, and we caution that multiple events at
multiple wavelengths may be necessary to determine an accurate delay in any lens system. Now that
consensus has been reached regarding the time delay in the 0957]561 system, the most pressing issue
remaining for determining is a full understanding of the mass distribution in the lens.H0
Subject headings : distance scale È gravitational lensing È quasars : individual (0957]561) È

radio continuum: stars

1. INTRODUCTION

The time delay between multiple gravitationally lensed
images can be used to measure the distance of high-redshift
objects and thus is a useful estimator of the Hubble param-
eter, After many years of monitoring the lensH0.
0957]561, the time-delay estimates for this system are
Ðnally converging on an accepted value. Groups monitor-
ing 0957]561 at optical wavelengths have detected a sharp
variation in each image and have found the optical delay to
be 417 ^ 3 days et al. 1995, 1997 ; Oscoz et al.(Kundic!
1997 ; Schild & Thomson 1997). Given the long controversy
over the value of the delay (for a history see Table 1 of
Haarsma et al. 1997, hereafter Paper I), it is important that
the optical measurement be conÐrmed at radio wave-
lengths. The MIT radio astronomy group has monitored
the source at radio wavelengths from 1979 to 1997, and the
Ðnal light-curve data and time-delay results are reported
here.

2. OBSERVATIONS

Observations have occurred monthly at the National
Radio Astronomy Observatory (NRAO) Very Large Array
radio telescope (VLA)4 since 1979 at 6 cm and since 1990 at
4 cm. The monitoring ended in 1997 December. All of the
data were reduced in the manner described in Paper I and

et al. (1992). To determine the Ñux densities of theLeha! r

1 Haverford College, Haverford, PA 19041 ; dhaarsma=haverford.edu.
2 Department of Physics, 37-607, Massachusetts Institute of Tech-

nology, Cambridge, MA 02139.
3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,

Cambridge, MA 02138.
4 The National Radio Astronomy Observatory is operated by Associ-

ated Universities, Inc., under cooperative agreement with the National
Science Foundation.

point images, it was necessary to subtract the extended
structure in the Ðeld. At both 6 and 4 cm this subtraction
was difficult in the most compact VLA array, D; thus there
are gaps in the light curves for 4 months of every 16 month
cycle. In addition, some observations in other VLA arrays
were excluded due to bad weather or poor subtraction of
the extended structure. When the observations were made
in a combination or nonstandard array conÐguration, the
data were analyzed according to the next largest standard
conÐguration (A, B, or C).

The 6 cm data through 1994 December were presented in
Paper I. The remaining 6 cm data and all of the 4 cm data
are given in Tables 1 and 2 and plotted in Figure 1.5 There
are a total of 147 points in the 6 cm light curve and 58
points in the 4 cm light curve. At 6 cm the Ñux density of the
B image increased in 1995, following the A image increase in
1994. The current 6 cm feature has lasted longer than the
similar feature around 1989È1991, but the A image is now
declining. At 4 cm the quasar is twice as variable as at 6 cm
(as a percentage of average Ñux density). Also, the variations
in the 4 cm light curves occur earlier than the corresponding
features at 6 cm. Both of these characteristics are consistent
with multiwavelength models and other observations of
active galactic nucleus (AGN) variability (e.g., Marscher &
Gear 1985 ; Stevens et al. 1996). The well-sampled increase
and decrease at 4 cm in 1994È1997 has helped signiÐcantly
in determining the radio time delay.

3. FREE PARAMETERS IN THE LIGHT CURVES

When Ðtting for the time delay between the images, the
di†erence in magniÐcation between them must be properly

5 The light-curve data are also available electronically through http ://
space.mit.edu/RADIO/papers.html.
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Figure 1. Time delay measurements of the Hubble constant, circa 2003 (Courbin 2003).

to one or more of these difficulties. Before delving into the details, we review the physics
upon which the estimate of the Hubble constant is based.†

3. Lensing fundamentals

3.1. The 3 D’s

There is a sense in which time delay is the most fundamental manifestation of gravi-
tational lensing. In the weak field limit a gravitational potential produces an effective
index of refraction that increases the travel time for a photon. Fermat’s principle requires
that the photon travel along a path that is a minimum, a maximum or a saddlepoint

† An excellent, although slightly outdated pedagogical treatment of gravitational lensing can
be found in Narayan & Bartelmann (1999).

Courbin 2003
Haarsma 1999

Issues with modelling lens - limited constraints
Mass sheet degeneracy
Only ~10% quasars variable on useful timescales
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Cluster Masses
• We can take all of the theory that we’ve developed for galaxies and apply it 

to clusters.  Again the isothermal sphere is a good starting point...

• Mass estimation assuming the arcs lie approximately on the Einstein radius

Figure 23: Hubble Space Telescope image of the cluster Abell 2218, showing a number of arcs and
arclets around the two centers of the cluster. (NASA HST Archive)

In addition to these two topics, we also discuss in this section weak lensing by large-scale
structure in the universe. This topic promises to develop into an important branch of gravitational
lensing, and could in principle provide a direct measurement of the primordial power spectrum
P (k) of the density fluctuations in the universe.

4.1 Strong Lensing by Clusters — Giant Arcs

4.1.1 Basic Optics

We begin by summarizing a few features of generic lenses which we have already discussed in the
previous sections. A lens is fully characterized by its surface mass density Σ(!θ). Strong lensing,
which is accompanied by multiple imaging, requires that the surface mass density somewhere in
the lens should be larger than the critical surface mass density,

Σ ! Σcr = 0.35 g cm−3

(

D

Gpc

)−1

, (75)

where D is the effective lensing distance defined in eq. (18). A lens which satisfies this condition
produces one or more caustics. Examples of the caustics produced by an elliptical lens with a
finite core are shown in Fig. 19. Sources outside all caustics produce a single image; the number
of images increases by two upon each caustic crossing toward the lens center. As illustrated in
Figs. 19 and 20, extended sources like galaxies produce large arcs if they lie on top of caustics.
The largest arcs are formed from sources on cusp points, because then three images of a source
merge to form the arc (cf. the right panel in Fig. 19 or the top right panel in Fig. 20). At the
so-called “lips” and “beak-to-beak” caustics, which are related to cusps, similarly large arcs are
formed. Sources on a fold caustic give rise to two rather than three merging images and thus form
moderate arcs.

4.1.2 Cluster Mass Inside a Giant Arc

The location of an arc in a cluster provides a simple way to estimate the projected cluster mass
within a circle traced by the arc (cf. Fig. 24). For a circularly symmetric lens, the average surface
mass density 〈Σ〉 within the tangential critical curve equals the critical surface mass density Σcr.
Tangentially oriented large arcs occur approximately at the tangential critical curves. The radius
θarc of the circle traced by the arc therefore gives an estimate of the Einstein radius θE of the
cluster.

Figure 24: Tangential arcs constrain the cluster mass within a circle traced by the arcs.

Thus we have
〈Σ(θarc)〉 ≈ 〈Σ(θE)〉 = Σcr , (76)

and we obtain for the mass enclosed by θ = θarc

M(θ) = Σcr π (Ddθ)2 ≈ 1.1 × 1014 M"

(

θ

30′′

)2 (

D

1 Gpc

)

. (77)
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Figure 23: Hubble Space Telescope image of the cluster Abell 2218, showing a number of arcs and
arclets around the two centers of the cluster. (NASA HST Archive)

In addition to these two topics, we also discuss in this section weak lensing by large-scale
structure in the universe. This topic promises to develop into an important branch of gravitational
lensing, and could in principle provide a direct measurement of the primordial power spectrum
P (k) of the density fluctuations in the universe.

4.1 Strong Lensing by Clusters — Giant Arcs

4.1.1 Basic Optics

We begin by summarizing a few features of generic lenses which we have already discussed in the
previous sections. A lens is fully characterized by its surface mass density Σ(!θ). Strong lensing,
which is accompanied by multiple imaging, requires that the surface mass density somewhere in
the lens should be larger than the critical surface mass density,

Σ ! Σcr = 0.35 g cm−3

(

D
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)−1

, (75)

where D is the effective lensing distance defined in eq. (18). A lens which satisfies this condition
produces one or more caustics. Examples of the caustics produced by an elliptical lens with a
finite core are shown in Fig. 19. Sources outside all caustics produce a single image; the number
of images increases by two upon each caustic crossing toward the lens center. As illustrated in
Figs. 19 and 20, extended sources like galaxies produce large arcs if they lie on top of caustics.
The largest arcs are formed from sources on cusp points, because then three images of a source
merge to form the arc (cf. the right panel in Fig. 19 or the top right panel in Fig. 20). At the
so-called “lips” and “beak-to-beak” caustics, which are related to cusps, similarly large arcs are
formed. Sources on a fold caustic give rise to two rather than three merging images and thus form
moderate arcs.

4.1.2 Cluster Mass Inside a Giant Arc

The location of an arc in a cluster provides a simple way to estimate the projected cluster mass
within a circle traced by the arc (cf. Fig. 24). For a circularly symmetric lens, the average surface
mass density 〈Σ〉 within the tangential critical curve equals the critical surface mass density Σcr.
Tangentially oriented large arcs occur approximately at the tangential critical curves. The radius
θarc of the circle traced by the arc therefore gives an estimate of the Einstein radius θE of the
cluster.

Figure 24: Tangential arcs constrain the cluster mass within a circle traced by the arcs.

Thus we have
〈Σ(θarc)〉 ≈ 〈Σ(θE)〉 = Σcr , (76)

and we obtain for the mass enclosed by θ = θarc

M(θ) = Σcr π (Ddθ)2 ≈ 1.1 × 1014 M"

(

θ

30′′

)2 (

D

1 Gpc

)

. (77)
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• This agrees with estimates from X-ray luminosity estimates and dynamical 
estimates (a. la. Zwicky).  Assumptions much simpler, so in principle this is a 
more accurate mass determination.
(caveat: really measuring mass inside a cylinder...)

• Since the masses are much larger than that in the 
observed galaxies and gas in the cluster this is yet another 
indication of the presence of dark matter in the Universe.

• Often many background galaxies are multiply imaged by
cluster - each can be used to constrain the mass 
distribution.  Allows for constraints on cluster 
substructure



Weak lensing

• So far we’ve focussed on the effects of strong lensing where the source 
passes in side the Einstein radius and multiple images are formed

• Although a weaker signal its also interesting to examine the effect on 
sources outside the Einstein radius, which are weakly lensed...

• By analogy to the giant arcs, we expect there to be smaller distortions to 
galaxies further from the center of a cluster (or a galaxy)

• Because the signal on an individual galaxy is smaller we need to average over 
many galaxies, which makes this a statistics based test

• Complicated by fact that galaxies are not intrinsically circular, but on average 
we don’t expect the ellipticities of galaxies to have a preferred direction



Lensing potential
3.2 Effective Lensing Potential

Before proceeding to more complicated galaxy lens models, it is useful to develop the formalism
a little further. Let us define a scalar potential ψ("θ) which is the appropriately scaled, projected
Newtonian potential of the lens,

ψ("θ) =
Dds

DdDs

2

c2

∫

Φ(Dd
"θ, z) dz . (48)

The derivatives of ψ with respect to "θ have convenient properties. The gradient of ψ with respect
to θ is the deflection angle,

"∇θψ = Dd
"∇ξψ =

2

c2

Dds

Ds

∫

"∇⊥Φ dz = "α , (49)

while the Laplacian is proportional to the surface-mass density Σ,

∇2
θψ =

2

c2

DdDds

Ds

∫

∇2
ξΦ dz =

2

c2

DdDds

Ds
· 4πGΣ = 2

Σ("θ)

Σcr
≡ 2κ("θ) , (50)

where Poisson’s equation has been used to relate the Laplacian of Φ to the mass density. The
surface mass density scaled with its critical value Σcr is called the convergence κ("θ). Since ψ
satisfies the two-dimensional Poisson equation ∇2

θψ = 2κ, the effective lensing potential can be
written in terms of κ

ψ("θ) =
1

π

∫

κ("θ′) ln |"θ − "θ′| d2θ′ . (51)

As mentioned earlier, the deflection angle is the gradient of ψ, hence

"α("θ) = "∇ψ =
1

π

∫

κ("θ′)
"θ − "θ′

|"θ − "θ′|2
d2θ′ , (52)

which is equivalent to eq. (10) if we account for the definition of Σcr given in eq. (17).
The local properties of the lens mapping are described by its Jacobian matrix A,

A ≡
∂"β

∂"θ
=

(

δij −
∂αi("θ)

∂θj

)

=

(

δij −
∂2ψ("θ)

∂θi∂θj

)

= M−1 . (53)

As we have indicated, A is nothing but the inverse of the magnification tensor M. The matrix
A is therefore also called the inverse magnification tensor. The local solid-angle distortion due to
the lens is given by the determinant of A. A solid-angle element δβ2 of the source is mapped to
the solid-angle element of the image δθ2, and so the magnification is given by

δθ2

δβ2
= detM =

1

detA
. (54)

This expression is the appropriate generalization of eq. (26) when there is no symmetry.
Equation (53) shows that the matrix of second partial derivatives of the potential ψ (the

Hessian matrix of ψ) describes the deviation of the lens mapping from the identity mapping. For
convenience, we introduce the abbreviation

∂2ψ

∂θi∂θj
≡ ψij . (55)

Since the Laplacian of ψ is twice the convergence, we have

κ =
1

2
(ψ11 + ψ22) =

1

2
tr ψij . (56)
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the lens is given by the determinant of A. A solid-angle element δβ2 of the source is mapped to
the solid-angle element of the image δθ2, and so the magnification is given by

δθ2

δβ2
= detM =

1

detA
. (54)

This expression is the appropriate generalization of eq. (26) when there is no symmetry.
Equation (53) shows that the matrix of second partial derivatives of the potential ψ (the

Hessian matrix of ψ) describes the deviation of the lens mapping from the identity mapping. For
convenience, we introduce the abbreviation

∂2ψ

∂θi∂θj
≡ ψij . (55)

Since the Laplacian of ψ is twice the convergence, we have

κ =
1

2
(ψ11 + ψ22) =

1

2
tr ψij . (56)
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3.2 Effective Lensing Potential

Before proceeding to more complicated galaxy lens models, it is useful to develop the formalism
a little further. Let us define a scalar potential ψ("θ) which is the appropriately scaled, projected
Newtonian potential of the lens,

ψ("θ) =
Dds

DdDs

2

c2

∫

Φ(Dd
"θ, z) dz . (48)

The derivatives of ψ with respect to "θ have convenient properties. The gradient of ψ with respect
to θ is the deflection angle,

"∇θψ = Dd
"∇ξψ =

2

c2

Dds

Ds

∫

"∇⊥Φ dz = "α , (49)

while the Laplacian is proportional to the surface-mass density Σ,
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c2
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Ds
· 4πGΣ = 2

Σ("θ)

Σcr
≡ 2κ("θ) , (50)

where Poisson’s equation has been used to relate the Laplacian of Φ to the mass density. The
surface mass density scaled with its critical value Σcr is called the convergence κ("θ). Since ψ
satisfies the two-dimensional Poisson equation ∇2

θψ = 2κ, the effective lensing potential can be
written in terms of κ

ψ("θ) =
1

π

∫

κ("θ′) ln |"θ − "θ′| d2θ′ . (51)

As mentioned earlier, the deflection angle is the gradient of ψ, hence

"α("θ) = "∇ψ =
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π

∫
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which is equivalent to eq. (10) if we account for the definition of Σcr given in eq. (17).
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Introduce the lensing potential Ψ by projecting and rescaling the Newtonian potential

The gradient of this gives the deflection angle

The divergence is similarly simply related to the surface mass density

This gives us another way of thinking about the effects of lensing.  We’ve seen that 
lensing will map an area in the source plane to an area in the image plane according to 
the lens equation.  We can express this in terms of the matrix 
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Two additional linear combinations of ψij are important, and these are the components of the
shear tensor,

γ1(#θ) =
1

2
(ψ11 − ψ22) ≡ γ(#θ) cos

[

2φ(#θ)
]

,

γ2(#θ) = ψ12 = ψ21 ≡ γ(#θ) sin
[

2φ(#θ)
]

.

(57)

With these definitions, the Jacobian matrix can be written

A =

(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)

= (1 − κ)

(

1 0
0 1

)

− γ

(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)

.

(58)

The meaning of the terms convergence and shear now becomes intuitively clear. Convergence
acting alone causes an isotropic focusing of light rays, leading to an isotropic magnification of a
source. The source is mapped onto an image with the same shape but larger size. Shear introduces
anisotropy (or astigmatism) into the lens mapping; the quantity γ = (γ2

1 + γ2
2)1/2 describes the

magnitude of the shear and φ describes its orientation. As shown in Fig. 13, a circular source of
unit radius becomes, in the presence of both κ and γ, an elliptical image with major and minor
axes

(1 − κ − γ)−1 , (1 − κ + γ)−1 . (59)

The magnification is

µ = detM =
1

detA
=

1

[(1 − κ)2 − γ2]
. (60)

Note that the Jacobian A is in general a function of position #θ.

Figure 13: Illustration of the effects of convergence and shear on a circular source. Convergence
magnifies the image isotropically, and shear deforms it to an ellipse.

3.3 Gravitational Lensing via Fermat’s Principle

3.3.1 The Time-Delay Function

The lensing properties of model gravitational lenses are especially easy to visualize by application of
Fermat’s principle of geometrical optics (Nityananda 1984, unpublished; Schneider 1985; Blandford
& Narayan 1986; Nityananda & Samuel 1992). From the lens equation (14) and the fact that the
deflection angle is the gradient of the effective lensing potential ψ, we obtain

(#θ − #β) − #∇θψ = 0 . (61)

This equation can be written as a gradient,

#∇θ

[

1

2
(#θ − #β)2 − ψ

]

= 0 . (62)

The physical meaning of the term in square brackets becomes more obvious by considering the
time-delay function,

t(#θ) =
(1 + zd)

c

DdDs

Dds

[

1

2
(#θ − #β)2 − ψ(#θ)

]

= tgeom + tgrav .

(63)
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3.2 Effective Lensing Potential

Before proceeding to more complicated galaxy lens models, it is useful to develop the formalism
a little further. Let us define a scalar potential ψ("θ) which is the appropriately scaled, projected
Newtonian potential of the lens,

ψ("θ) =
Dds

DdDs

2

c2

∫

Φ(Dd
"θ, z) dz . (48)

The derivatives of ψ with respect to "θ have convenient properties. The gradient of ψ with respect
to θ is the deflection angle,

"∇θψ = Dd
"∇ξψ =

2

c2

Dds

Ds

∫

"∇⊥Φ dz = "α , (49)

while the Laplacian is proportional to the surface-mass density Σ,

∇2
θψ =

2

c2

DdDds

Ds

∫

∇2
ξΦ dz =

2

c2

DdDds

Ds
· 4πGΣ = 2

Σ("θ)

Σcr
≡ 2κ("θ) , (50)

where Poisson’s equation has been used to relate the Laplacian of Φ to the mass density. The
surface mass density scaled with its critical value Σcr is called the convergence κ("θ). Since ψ
satisfies the two-dimensional Poisson equation ∇2

θψ = 2κ, the effective lensing potential can be
written in terms of κ

ψ("θ) =
1

π

∫

κ("θ′) ln |"θ − "θ′| d2θ′ . (51)

As mentioned earlier, the deflection angle is the gradient of ψ, hence

"α("θ) = "∇ψ =
1

π

∫

κ("θ′)
"θ − "θ′

|"θ − "θ′|2
d2θ′ , (52)

which is equivalent to eq. (10) if we account for the definition of Σcr given in eq. (17).
The local properties of the lens mapping are described by its Jacobian matrix A,

A ≡
∂"β

∂"θ
=

(

δij −
∂αi("θ)

∂θj

)

=

(

δij −
∂2ψ("θ)

∂θi∂θj

)

= M−1 . (53)

As we have indicated, A is nothing but the inverse of the magnification tensor M. The matrix
A is therefore also called the inverse magnification tensor. The local solid-angle distortion due to
the lens is given by the determinant of A. A solid-angle element δβ2 of the source is mapped to
the solid-angle element of the image δθ2, and so the magnification is given by

δθ2

δβ2
= detM =

1

detA
. (54)

This expression is the appropriate generalization of eq. (26) when there is no symmetry.
Equation (53) shows that the matrix of second partial derivatives of the potential ψ (the

Hessian matrix of ψ) describes the deviation of the lens mapping from the identity mapping. For
convenience, we introduce the abbreviation

∂2ψ

∂θi∂θj
≡ ψij . (55)

Since the Laplacian of ψ is twice the convergence, we have

κ =
1

2
(ψ11 + ψ22) =

1

2
tr ψij . (56)
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Convergence

Shear

Rewrite transformation
matrix

Magnification

Major and minor axes

4

τ(LMC) ∼ 10−7 (27)

τ(Gal.Bulge.) ∼ 10−6 (28)

}

Galaxy lensing

θE = 1.6”
( σv

200 km s−1

)2
(

Dds

Ds

)
(29)

α = α̂
Dds

Ds
= 4π

σ2
v

c2

Dds

Ds
= θE (30)

β = θ − θE
θ

|θ| (31)

DA ∝ H−1
0 (32)

M(θE) = π(DLθE)2Σcr (33)

H0∆τ = const (34)

κ(θ) =
Σ(θ)
Σcr

(35)



Using ellipticity to infer mass density

• Both convergence and sheer determined by same lensing potential

• Measure ellipticities of galaxies and use to infer the shear field

• Infer lensing potential from shear

• Obtain convergence and so mass density from divergence of lensing 
potential



Shear maps
                        

FIG. 25.—HST image of the cluster Cl 0024, overlaid on the left with the shear field obtained from an observation of arclets with the Canada-
France Hawaii Telescope (Y. Mellier & B. Fort), and on the right with the reconstructed surface-mass density determined from the shear field (C.
Seitz et al.). The reconstruction was done with a non-linear, finite-field algorithm.

there is a scaling uncertainty in this quantity. For a lens with
given surfacemass density, the distortion increases with increas-
ing source redshift. If the sources are at much higher redshifts
than the cluster, the influence of the source redshift becomes
weak. Therefore, this uncertainty is less serious for low redshift
clusters.
Nearly all the problemsmentioned above have been addressed

and solved. The solutions are discussed in the following subsec-
tions.

4.2.3. Eliminating the Mass Sheet Degeneracy by Measuring
the Convergence

By eq. (60),

µ
1

1 ! 2 "2
(93)

and so the magnification scales with # as µ$# 2. Therefore, the
mass-sheet degeneracy can be broken by measuring the magnifi-
cation µ of the images in addition to the shear (Broadhurst et al.
1995). Twomethods have been proposed to measure µ. The first
relies on comparing the galaxy counts in the cluster field with
those in an unlensed “empty” field (Broadhurst et al. 1995). The
observed counts of galaxies brighter than some limiting magni-
tude m are related to the intrinsic counts through

N m N0 m µ2 5s 1 (94)

where s is the logarithmic slope of the intrinsic number count
function,

s
d logN m

dm
(95)

In blue light, s 0 4, and thusN m N m independent of the
magnification, but in red light s 0 15, and the magnification
leads to a dilution of galaxies behind clusters. The reduction of

red galaxy counts behind the cluster A 1689 has been detected
by Broadhurst (1995).

The other method is to compare the sizes of galaxies in the
cluster field to those of similar galaxies in empty fields. Since
lensing conserves surface brightness, it is most convenient to
match galaxies with equal surface brightness while making this
comparison (Bartelmann & Narayan 1995a). The magnification
is then simply the ratio between the sizes of lensed and unlensed
galaxies. Labeling galaxies by their surface brightness has the
further advantage that the surface brightness is a steep function
of galaxy redshift, which allows the user to probe the change of
lens efficiency with source redshift (see below).

4.2.4. Determining Source Redshifts

For a given cluster, the strength of distortion and magnification
due to lensing increases with increasing source redshift zs. The
mean redshift z̄s of sources as a function of apparentmagnitudem
can thus be inferred by studying the mean strength of the lensing
signal vs. m (Kaiser 1995; Kneib et al. 1996).

The surface brightness S probably provides a better label for
galaxies than the apparent magnitude because it depends steeply
on redshift and is unchanged by lensing. Bartelmann & Narayan
(1995a) have developed an algorithm,which they named the lens
parallaxmethod, to reconstruct the clustermass distributions and
to infer simultaneously z̄s as a function of the surface brightness.
In simulations, data from 10 cluster fields and an equal number
of empty comparison fields were sufficient to determine the clus-
ter masses to 5% and the galaxy redshifts to 10% accu-
racy. The inclusion of galaxy sizes in the iterative lens-parallax
algorithm breaks the mass-sheet degeneracy, thereby removing
the ambiguities in shear-based cluster reconstruction techniques
arising from the transformation (92) and from the unknown red-
shift distribution of the sources.
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Generally centers of light and mass coincide
as do centers of X-ray emission and mass 



Bullet Cluster

HST: galaxy distribution
Chandra: X-ray map

HST: mass contours from weak lensing
Chandra: X-ray map

Weak+strong lensing shows that mass center and majority of
the matter do not occur at the same location

Clowe+ 2006



Cluster searches
Can use weak lensing to find new clusters by looking for peaks in the inferred
mass distribution - solely based on mass critera not emitted radiation
- complementary to current SZ searches

Potential probe of clusters with low gas or galaxy content if they exist 
“dark clusters”



Clusters as gravitational telescopes

on theNIRSPECdetector. Using this information, sky background
modeling was performed using a two-dimensional B-spline fit,
where a low-degree polynomial is fitted to the slit illumination
and a B-spline is fitted along the dispersion axis. The wavelength
calibration is subsequently computed using atmospheric emis-
sion lines. For each exposure, we also compute two-dimensional
variance arrays by summing the contribution from the dark cur-
rent, flat field, read noise, sky background, and source counts to
the variance.

Following techniques introduced in Santos et al. (2004), we
determined the astrometric position of each spectral exposure
by registering images from the NIRSPEC slit-viewing camera
(SCAM) to HST images of the same field. World coordinate sys-
tem (WCS) coordinates were computed for each exposed pixel
on the detector using the slit position grid described above. Since
these are galaxy cluster fields, many bright objects appear in the
46 ; 46 arcsec2 field of view, enabling accurate registration onto
theWCS of theHST images, with a typical rms of 0.1500 (less than
25% of the slit width). Offsets between exposures of a given slit
position are calculated from the registered SCAM images, and the
two-dimensional spectra and their associated two-dimensional
variance arrays are subsequently shifted and combined. To re-
move cosmic rays and bad pixels, we median-combine the data,
rejecting the brightest and faintest frame at each pixel.

Our ability to detect faint emission lines is strongly dependent
upon the accuracy with which the offsets between the different ex-
posures of a slit position are known. If a bright emission line from
a foreground galaxy lies serendipitously on the slit, the accuracy

Fig. 2.—Survey clusters, with survey area and lensing critical curves. For each cluster, superposed on the HST WFPC2 image are slit positions observed with
NIRSPEC and the critical lines for a source at z = 8 (dotted lines). From left to right and top to bottom are Abell 68, 370, 963, 1689, 2218, 2219, and 2390, Cl 0024þ16,
and MS 0451"03. [See the electronic edition of the Journal for a color version of this figure.]

TABLE 2

NIRSPEC Survey Observations

Date Cluster/Slit Position Anglea Integration Timeb

2004 Aug ........... Abell 2390 1 117 12.0

Abell 2219 1 119.2 9.6

Abell 68 1 330 13.2

2005 Jan............. MS 0451"03 1 120.9 11.4

Abell 963 1 177.2 10.8

Abell 963 2 175.0 5.4

Abell 1689 1 73 5.4

2005 June........... Abell 1689 1 73 3.6

Abell 1689 2 205 10.8

Abell 1689 3 139.1 10.8

Abell 2218 1 153 10.8

Abell 2218 2 134 5.4

Abell 2219 1 119.2 5.4

Abell 2219 2 160 16.2

Abell 2390 2 109 10.2

Abell 2390 3 20.0 6

2005 Oct ............ Abell 68 2 300 10.8

Cl 0024þ16 1 139.7 5.4

Cl 0024þ16 2 160.2 4.8

MS 0451"03 2 100.1 7.2

Abell 2390 3 20.0 5.4

Abell 2390 4 90.0 4.8

Abell 2219 2 160 2.4

a In degrees north through east.
b In 103 s.
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Use gravitational lensing to help find faint galaxies at high redshift (z>7)

Significant magnification (>20) occurs along the critical lines of clusters enabling faint galaxies
to be detected

Stark+ 2007

By focusing their search along the known 
critical curves of nine clusters.  Stark et 
al (2007) were able to find some of the 
highest redshift galaxies yet discovered.  
This provides one of our only views onto 
the sources responsible for reionization. 

Trade magnification for small 
survey volume in source plane



Cosmic Shear and LSS
• In the coming decade, there will be a number of large area, deep, galaxy 

surveys such as JDEM, LSST, etc.

• By measuring the shape of millions of galaxies across the whole sky one can 
hope to measure the density distribution of large scale structure.  This 
approach has enormous power for cosmology.

• 3D mapping of DM achieved by using source populations at different 
redshifts

• Control systematics using E/B 
decomposition

Massey+ 2007 (COSMOS) 
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Figure 2. The statistical signals sought by measurements of weak gravi-
tational lensing are slight but coherent distortions in the shapes of distant
galaxies. A tangential, circular pattern is produced around a foreground
mass overdensity, reminiscent of the tangential arcs of strong lensing. On
much larger scales, an opposite, radial pattern is produced by foreground
voids. Physical gravitational lensing produces only these “E-mode” patterns.
However, there is another degree of freedom in a shear (vector-like) field,
and spurious artefacts can typically mimic both. Measurements of “B-mode”
patterns therefore provide a free test for residual systematic defects.

2. Instrumental nuisances

Although the weak lensing shear signal is coherent across several arcminutes, it
is still weak. Measuring the tiny distortions in the shapes of distant (therefore
small and faint) galaxies requires unusually precise control over imaging qual-
ity. For example, the galaxies are inevitably viewed after convolution with the
telescope’s Point Spread Function (PSF). For ground-based telescopes, this is
dominated by turbulence in the Earth’s atmosphere, and is particularly trouble-
some. Even from space, diffraction through the finite aperture of the primary
mirror blurs the shapes of small galaxies in a manner that can mimic or dilute
a weak gravitational lensing signal. Furthermore, HST’s low-Earth orbit also
brings it in and out of the shadow of the Earth. Thermal expansions and con-
tractions of only a few microns in its 13m length put it sufficiently out of focus to
alter the ellipticity of its PSF, and consequently that of galaxies, by an amount
comparable to the weak lensing signal. It is therefore necessary to model the
shape of the PSF from stars within each image. Unusually for extragalactic
observations, the ideal sky location for a weak lensing survey is therefore not
necessarily at the galactic poles.

The cameras currently aboard HST also suffer from a second instrumental
problem. Harsh radiation in the orbital environment has damaged the CCD
detectors, creating charge traps within the silicon lattice. At the end of each
exposure, when photoelectrons are transferred to readout electronics at the edge
of the CCD, they can be temporarily captured in these traps and released after
a short delay. The main packet of photoelectrons will typically have been moved
several more pixels by the time the captured electrons are released. The released
electrons therefore produce a trail behind each astronomical object. This mimics
the weak lensing signal in sinister fashion. It adds a coherent, spurious ellipticity
to each object, and is a non-linear process that affects faint and small galaxies
more than bright, large ones. Worse still, because of the particular orientation



Cosmic sheer in cosmology

• Probe modifications to gravity via growth of structure

• Some claimed inconsistencies between growth of structure predicted using GR 
and weak lensing data (Bean 2009)

• Weak lensing also important for CMB: lensed E mode polarization looks like B 
mode polarization and conceals the B-mode signature of inflation from 
gravitational waves



The end

• Normal service will resume next lecture


